• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical integration of the electron density /

El-Sherbiny, Aisha, January 2002 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2002. / Restricted until May 2003. Bibliography: leaves 88-91.
2

A Study of High-Speed Non-Classical Unipolar CMOS with a Thick Sidewall-Spacer Gate-Oxide NMOS Load

Wang, Shih-Wei 25 July 2012 (has links)
In this thesis, we present a high-speed non-classical unipolar CMOS with a thick sidewall-spacer gate-oxide NMOS load. This unipolar CMOS is composed of a NMOS driver and a thick sidewall-spacer gate-oxide NMOS which replaces a PMOS as load. We focus on the investigation of punch-through current in unipolar CMOS trends. In addition, we also design a conventional CMOS for comparison. According to the simulations, the logical characteristics of our proposed CMOS are valid, in which the average propagation delay time is improved 20 % compared with the conventional CMOS. This is due to the presence of a thick sidewall-spacer gate-oxide NMOS load. For the viewpoint of device fabrication, the N well process can also be eliminated. This means that the proposed NMOS load not only improves the CMOS speed, but also reduces the fabrication cost. Thus, because of the shared-terminal output, the layout area can be significantly decreased 41 %, in comparison with the conventional CMOS.

Page generated in 0.1367 seconds