• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparing Wrist Movement Analysis Technologies / Jämförelse av Tekniker för Analys av Handledsrörelser

Hanna, Markus, Cajander, Anton January 2023 (has links)
The wrist is a body part that can be used during repetitive movements in many work environments. There is a need to measure these movements in order to notice harmful repetitive movements in advance. There are many different ways to measure these movements, such as with the use of a depth camera. The goal of this study is to determine if this can be done with high precision compared to other technologies. In order to determine this, an application was created that used several different technologies and libraries to track and pinpoint the hand’s and forearm’s location in each frame. With these locations, together with timestamps from the frames, the angular velocity of the wrist could be calculated. The recordings were made in several different test cases with factors such as background, clothes and lighting changing in each test. In order to compare the depth cameras values, a golden standard had to be set. The depth camera’s recorded values were compared to the golden standard’s recorded values by displaying the values on a graph and by calculating the root mean squared error as well as the mean absolute error. The results indicated that a depth camera can be used to measure wrist movements relatively accurately, even with more advanced movements relative to this study. The result also showed that the depth camera had problems in some test cases. / Handleden är en kroppsdel som kan användas under repetitiva rörelser i många arbetsmiljöer. Det finns ett behov av att mäta dessa rörelser för att upptäcka skadliga repetitiva rörelser i förväg. Det finns många olika sätt att mäta dessa rörelser, till exempel med hjälp av en djupkamera. Målet med denna studie är att avgöra om detta kan göras med hög precision jämfört med andra teknologier. För att avgöra detta skapades en applikation som använder flera olika teknologier och bibliotek för att spåra och lokalisera handens och underarmens position i varje bildruta. Med hjälp av dessa positioner, tillsammans med tidsstämplar från bildrutorna, kunde vinkelhastigheten för handleden beräknas. Inspelningarna gjordes i flera olika testfall där faktorer som bakgrund, kläder och belysning ändrades i varje test. För att kunna jämföra djupkamerans värden behövdes en referensstandard fastställas. Djupkamerans inspelade värden jämfördes med referensstandardens inspelade värden genom att visa värdena på en graf och beräkna rotmedelkvadratfelet samt medelabsolutfelet. Resultaten indikerade att en djupkamera kan användas för att mäta handledsrörelser relativt noggrant, även med mer avancerade rörelser i förhållande till denna studie. Resultatet visade även att djupkameran hade problem i vissa testfall.
2

An Intelligent UAV Platform For Multi-Agent Systems

Taashi Kapoor (12437445) 21 April 2022 (has links)
<p> This thesis presents work and simulations containing the use of Artificial Intelligence for real-time perception and real-time anomaly detection using the computer and sensors onboard an Unmanned Aerial Vehicle. One goal of this research is to develop a highly accurate, high-performance computer vision system that can then be used as a framework for object detection, obstacle avoidance, motion estimation, 3D reconstruction, and vision-based GPS denied path planning. The method developed and presented in this paper integrates software and hardware techniques to reach optimal performance for real-time operations. </p> <p>This thesis also presents a solution to real-time anomaly detection using neural networks to further the safety and reliability of operations for the UAV. Real-time telemetry data from different sensors are used to predict failures before they occur. Both these systems together form the framework behind the Intelligent UAV platform, which can be rapidly adopted for different varieties of use cases because of its modular nature and on-board suite of sensors. </p>

Page generated in 0.0727 seconds