1 |
Spectral Image Processing Theory and Methods: Reconstruction, Target Detection, and Fundamental Performance BoundsKrishnamurthy, Kalyani January 2011 (has links)
<p>This dissertation presents methods and associated performance bounds for spectral image processing tasks such as reconstruction and target detection, which are useful in a variety of applications such as astronomical imaging, biomedical imaging and remote sensing. The key idea behind our spectral image processing methods is the fact that important information in a spectral image can often be captured by low-dimensional manifolds embedded in high-dimensional spectral data. Based on this key idea, our work focuses on the reconstruction of spectral images from <italic>photon-limited</italic>, and distorted observations. </p><p>This dissertation presents a partition-based, maximum penalized likelihood method that recovers spectral images from noisy observations and enjoys several useful properties; namely, it (a) adapts to spatial and spectral smoothness of the underlying spectral image, (b) is computationally efficient, (c) is near-minimax optimal over an <italic>anisotropic</italic> Holder-Besov function class, and (d) can be extended to inverse problem frameworks.</p><p>There are many applications where accurate localization of desired targets in a spectral image is more crucial than a complete reconstruction. Our work draws its inspiration from classical detection theory and compressed sensing to develop computationally efficient methods to detect targets from few projection measurements of each spectrum in the spectral image. Assuming the availability of a spectral dictionary of possible targets, the methods discussed in this work detect targets that either come from the spectral dictionary or otherwise. The theoretical performance bounds offer insight on the performance of our detectors as a function of the number of measurements, signal-to-noise ratio, background contamination and properties of the spectral dictionary. </p><p>A related problem is that of level set estimation where the goal is to detect the regions in an image where the underlying intensity function exceeds a threshold. This dissertation studies the problem of accurately extracting the level set of a function from indirect projection measurements without reconstructing the underlying function. Our partition-based set estimation method extracts the level set of proxy observations constructed from such projection measurements. The theoretical analysis presented in this work illustrates how the projection matrix, proxy construction and signal strength of the underlying function affect the estimation performance.</p> / Dissertation
|
2 |
Quelques Problèmes de Statistique autour des processus de Poisson / Some Statistical Problems Around Poisson ProcessesMassiot, Gaspar 07 July 2017 (has links)
L’objectif principal de cette thèse est de développer des méthodologies statistiques adaptées au traitement de données issues de processus stochastiques et plus précisément de processus de Cox.Les problématiques étudiées dans cette thèse sont issues des trois domaines statistiques suivants : les tests non paramétriques, l’estimation non paramétrique à noyaux et l’estimation minimax.Dans un premier temps, nous proposons, dans un cadre fonctionnel, des statistiques de test pour détecter la nature Poissonienne d’un processus de Cox.Nous étudions ensuite le problème de l’estimation minimax de la régression sur un processus de Poisson ponctuel. En se basant sur la décomposition en chaos d’Itô, nous obtenons des vitesses comparables à celles atteintes pour le cas de la régression Lipschitz en dimension finie.Enfin, dans le dernier chapitre de cette thèse, nous présentons un estimateur non-paramétrique de l’intensité d’un processus de Cox lorsque celle-ci est une fonction déterministe d’un co-processus. / The main purpose of this thesis is to develop statistical methodologies for stochastic processes data and more precisely Cox process data.The problems considered arise from three different contexts: nonparametric tests, nonparametric kernel estimation and minimax estimation.We first study the statistical test problem of detecting wether a Cox process is Poisson or not.Then, we introduce a semiparametric estimate of the regression over a Poisson point process. Using Itô’s famous chaos expansion for Poisson functionals, we derive asymptotic minimax properties of our estimator.Finally, we introduce a nonparametric estimate of the intensity of a Cox process whenever it is a deterministic function of a known coprocess.
|
Page generated in 0.1079 seconds