1 |
Large Surface Area of Graphene with Controlled Interlayer SpacingHara Sudhan Thangavelu, Hari January 2022 (has links)
Unique layered structure with excellent electrical, mechanical, thermal, and optical properties gives graphene widespread application. Graphene based materials are extensively studied in the field of energy storage such as batteries, hydrogen storage and supercapacitors (SC’s). High surface area, electrical conductivity and mechanical flexibility are notable properties for the materials used in energy conversion systems. Porous spaced graphene oxide (PGO) structures were synthesized by hydrothermal and solvothermal reaction between GO and various pillaring molecules include Tetrakis (4-aminophenyl) methane (TKAm), Ethylenediamine (EDA), 2-Amino-5-diethylaminopentane (ADAP) and 2-Aminoethyl trimethylammonium chloride hydrochloride (ATA). Pristine GO shows interlayer distance of 7.2 Å. Characterisation techniques such as XRD, SEM, FTIR, BET and TGA were used understand the properties of these PGO. In contrast, these pillared structures show interlayer distance greater than of the pristine GO. Notably, GO/TKAm show interlayer distance of 14.30 Å. These pillared structures are considered to solve the restacking and aggregation issues found in 2D porous structures. Since these pillaring molecules help to achieve 3D porous network. Pristine GO shows only surface area of 14 m2/g whereas these materials also show excellent surface area as well. GO/TKAm shows high surface area of 450 m2/g. Followed it GO/ATA shows surface area of 106 m2/g. GO/pillared structures show low sheet resistance which means good electrical conductivity. Ultimately, these pillared structures not only solve the issues in 2D porous systems but also improve the surface area, mechanical stability, and electrical conductivity of those systems by means of 3D porous interconnected structures. All these excellent properties make them a great candidate for the energy conversion systems. / Unik skiktad struktur med utmärkta elektriska, mekaniska, termiska och optiska egenskaper ger grafen en utbredd tillämpning. Grafenbaserade material studeras omfattande inom området energilagring såsom batterier, vätelagring och superkondensatorer (SC). Hög yta, elektrisk ledningsförmåga och mekanisk flexibilitet är anmärkningsvärda egenskaper för de material som används i energiomvandlingssystem. Porösa grafenoxidstrukturer (PGO) syntetiserades genom hydrotermisk och solvotermisk reaktion mellan GO och olika pelarmolekyler inkluderar tetrakis (4-aminofenyl) metan (TKAm), etylendiamin (EDA), 2-amino-5-dietylaminopentan (ADAP) och 2 Aminoetyltrimetylammoniumkloridhydroklorid (ATA). Pristine GO visar mellanskiktsavstånd på 7,2 Å. Karakteriseringstekniker som XRD, SEM, FTIR, BET och TGA användes för att förstå egenskaperna hos dessa PGO. Däremot visar dessa pelarstrukturer mellanskiktsavståndet större än det för den orörda GO. Noterbart visar GO / TKAm mellanskiktsavstånd på 14.30 Å. Dessa pelarstrukturer anses lösa omstaplings- och aggregeringsproblemen som finns i 2D-porösa strukturer. Eftersom dessa pelarmolekyler hjälper till att uppnå 3Dporöst nätverk. Pristine GO visar endast en yta på 14 m2 / g medan dessa material också visar utmärkt yta också. GO / TKAm visar hög yta på 450 m2 / g. Följde den visar GO/ATA en yta på 106 m2/g. GO / pelarstrukturer visar lågt plåtmotstånd vilket innebär god elektrisk ledningsförmåga. I slutändan löser dessa pelarstrukturer inte bara problemen i 2D-porösa system utan förbättrar också ytarean, den mekaniska stabiliteten och den elektriska ledningsförmågan hos dessa system med hjälp av 3D-porösa sammankopplade strukturer. Alla dessa utmärkta egenskaper gör energiomvandlingssystem.
|
Page generated in 0.1041 seconds