Spelling suggestions: "subject:"intermediate""
1 |
The study of reactive species at low and ambient temperatureChilds, Gavin I. January 2000 (has links)
No description available.
|
2 |
Delocalization in cationic, carbene, and radical intermediates in some bridged polycyclic systemsDacres, Jelena Estelle 07 February 2001 (has links)
Graduation date: 2001
|
3 |
Neutralization-reionization mass spectrometric and computational studies of elusive neutral intermediates /Chen, Xiaohong, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Includes bibliographical references (leaves 205-214).
|
4 |
Fast time-resolved infrared spectroscopy of reactive intermediatesVirrels, Ian G. January 1997 (has links)
No description available.
|
5 |
The first synthesis and structure of diazatetrathiafulvalenes and some spectroscopic and cyclic voltammetric measurements /Chu, Suk-ling. January 1993 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1994. / Includes bibliographical references (leaves 142-148).
|
6 |
Novel hybrid organic/inorganic single-sited catalysts and supports for fine chemical and pharmaceutical intermediate synthesisGill, Christopher Stephen. January 2009 (has links)
Thesis (M. S.)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Jones, Christopher; Committee Member: Agrawal, Pradeep; Committee Member: Teja, Amyn; Committee Member: Weck, Marcus; Committee Member: Zhang, John.
|
7 |
Mechanistic studies on chorismate synthase and shikimate kinaseBrown, Murray January 1994 (has links)
No description available.
|
8 |
Electronic defects as reaction intermediates in sodium chloride filmsAdams, Richard James January 1963 (has links)
Evaporated films of radioactive sodium chloride have been prepared by direct sublimation onto a water cooled quartz substrate at 10-⁵ mm of mercury. These possess specific surfaces of from 30-100 m²/g and show remarkably high exchange reactivity to chlorine.
From kinetic studies using ³⁶Cl incorporated in the solid it has been found that the extent of exchange C follows a fractional power of the time C = at[superscript n] and that the rate is independent of surface area, so that the possibility of the rate controlling step involving diffusion is ruled out. These features had been reported in an earlier study but required confirmation with a wider range of specific surface and a modified procedure to measure surface area before reaction.
The major part of the work is designed to elucidate the role of electronic defects in the exchange mechanism from the pressure and temperature dependence of the exchange rate and from the effect of introducing electronic defects by X-irradiation or fluoridation. These latter processes cause the kinetics of the reaction to change completely to a second-order law, and provide strong evidence to support an earlier tentative suggestion that electronic defects are involved in the reaction, and that a process of adsorption of a chlorine molecule into a pair of defects is important.
Detailed mechanisms are proposed for both the power law and the second-order reactions, largely on the basis of the pressure dependence. Both mechanisms use two species of electronic defect, corresponding to Seitz's models for V₂ and V₄ centres, and the "power law" mechanism requires a transition complex between the two defects.
Measurements by X-ray diffraction on the particle size in the evaporated films has shown them to be in the range 250-500 Å, and an estimate of the strain from the same results suggests that roughly one dislocation per particle is present. / Science, Faculty of / Chemistry, Department of / Graduate
|
9 |
The Preparation of Intermediates in the Synthesis of (1R,7'R)-Decumbensine and (13R,14R)-OphiocarpineCameron, Lynn Michele January 1990 (has links)
<p> The synthesis of 2-ethoxycarbonyl-1-hydroxymethyl-1,2,3,4-tetrahydro-6,7-methylenedioxyisoquinoline 117 and 2-acetyl-1,2,3,4-tetrahydro-6,7-methylenedioxyisoquinoline-1-carboxaldehyde 126 are described. These compounds are potentially useful intermediates for the asymmetric synthesis of two tetrahydroisoquinoline alkaloids, (1R,7'R)-decumbensine and (13R,14R)-ophiocarpine. Decumbensine is a simple 1-benzyl-1,2,3,4-tetrahydroisoquinoline alkaloid having a hydroxyl group at the carbon atom adjacent to C-1 of the isoquinoline ring. Ophiocarpine belongs to the tetrahydroprotoberberine group of isoquinoline alkaloids and has a hydroxyl group in the same relative position in its ring system as that found in decumbensine.</p> <p> The first synthesis led to a racemic intermediate which would require resolution before proceeding with the asymmetric synthesis. The second synthesis led directly to an optically active aldehyde and would appear to be the more satisfactory route.</p> <p> A procedure for the preparation of 3-benzyloxy-4-methoxy bromobenzene is also described. This compound, after halogen-metal exchange, would be used to introduce the second aromatic ring in the ophiocarpine synthesis.</p> <p> The literature on asymmetric synthesis of tetrahydroisoquinoline alkaloids has been reviewed in the introduction. (Diagrams included in thesis)</p> / Thesis / Master of Science (MSc)
|
10 |
Excited-State Dynamics of Organic Intermediates / Dynamik Angeregter Zustände von Organischen IntermediatenNoller, Bastian January 2009 (has links) (PDF)
This thesis gives insights into the real-time dynamics of several free carbenes and radicals on a femtosecond and nanosecond time scale. The experiments were performed with radicals, singlet carbenes and triplet carbenes of various sizes. Several neutral excited states as well as the ionic ground state were characterized. Despite the relevance of such reactive intermediates in almost all chemical reactions, only relatively little experimental information on such systems is found in the literature. This is linked to the experimental challenge of producing such species under isolated conditions. The intermediates are formed from precursor molecules under interaction- free conditions by supersonic jet flash pyrolysis. The precursor molecules were synthetically designed to show clean thermal dissociation into one specific intermediate. A large variety of spectroscopic techniques was applied to study the intermediates. Each method augments the results of the other methods. This enabled to successfully approach the main goal of this thesis: to understand the excited-state dynamics of organic intermediates. The excited states were found to deactivate rapidly to the hot ground state. The observed fast decay is presumably linked to coupled electronically excited states and relaxation takes place by internal conversion or conical intersections. Further reactions then take place on the ground state surface. Absorption spectra, photodissociation dynamics, photoelectron spectra, ionization potentials, excited-state lifetimes and dissociative photoionization were elucidated by the measurements. Pulsed and continuous light sources were used over a large spectral range (UV, Vis, VUV). A well-defined amount of energy was deposited into the molecule. After internal conversion has taken place, a microcanonical ensemble of reactive intermediates can be studied. This data helps to understand the energetics and reaction channels of intermediates. Velocity map imaging enabled to monitor the pyrolysis efficiency in real time by analyzing photoion images. This observation facilitates clean intermediate generation. Experimental results were compared to quantum chemical calculations to aid the interpretation as well as to test the performance of theoretical approaches. Hydrocarbon radicals and carbenes are regarded as benchmark systems for computational methods due to their several low-lying electronic states and open-shell electronic configuration. The experimental data can help to identify and understand the contributions of the examined intermediates to the chemistry of high energy environments (e. g., hydrocarbon cracking reactors, interstellar space and combustion chambers). Here increased numbers of hydrocarbon intermediates are often present and usually have a strong impact on the overall reaction mechanism. Such environments contain in general a complex mixture of several different intermediates. The more spectroscopic and dynamic properties of each isolated intermediate are known, the easier it is to identify it among multiple components and to understand how it contributes to the overall reaction mechanism. Electronic excitation can take place by radiation, particle collisions or thermally at very high temperatures. How excited states influence the reaction mechanisms is still a matter of currant research. / Diese Arbeit gibt Einblicke in die Dynamik angeregter Zustände von mehreren isolierten Carbenen und Radikalen. Experimente wurden an verschieden großen Radikalen, singlet Carbenen und triplet Carbenen durchgeführt. Angeregte elektronische Zustände, Grundzustände von Radikal-Kationen und die Photodissoziations-Dynamik des Grundzustandes wurden charakterisiert. Obwohl beinahe alle chemischen Reaktionen über reaktive Intermediate ablaufen, ihnen Schlüsselrollen bei Verbrennungsprozessen zugesprochen werden und sie in hohen Konzentrationen in interstellaren Medien vorkommen, sind viele dieser Spezies unzureichend charakterisiert. Dies liegt hauptsächlich am hohen experimentellen Aufwand, der zur sauberen Herstellung und Untersuchung von Intermediaten nötig ist. Die Intermediate in dieser Arbeit wurden mittels Supersonic-Jet- Flash-Pyrolysis generiert. Mit dieser Technik konnten die hoch reaktiven Moleküle konserviert und unter isolierten Bedingungen spektroskopisch untersucht werden. Hierfür wurden spezielle Vorläufermoleküle synthetisch hergestellt und auf ihre saubere thermische Zersetzung hin getestet und optimiert. Die Intermediate wurden mit einer Reihe von spektroskopischen Methoden untersucht, die sich auf eine hervorragende Art und Weise ergänzten. Das Hauptziel der Dissertation konnte somit erfolgreich abgeschlossen werden und das Verhalten angeregten Zustände einiger wichtiger Intermediate verstanden werden. Die Zustände relaxieren auf einer Femtosekunden-Zeitskala zum heißen Grundzustand. Die schnelle Deaktivierung ist allerWahrscheinlichkeit nach auf eine Kopplung der elektronisch angeregten Zustände zurückzuführen. Die Relaxation erfolgt über interne Konversion und konische Durchschneidungen. Photochemische Reaktionen laufen anschließend vom heißen Grundzustand aus ab. Zusätzlich konnten viele Charakteristika der Intermediate untersucht werden: Absorptionsspektren, Photochemie, Photoelektronenspektren, Ionisierungsenergien und dissoziative Photoionisation. Für die Untersuchungen wurde, über einen breiten spektralen Bereich (UV,Vis,VUV), hauptsächlich frequenz- und zeitaufgelöste Laser-Spektroskopie eingesetzt. Nachdem die Moleküle zum Grundzustand relaxiert waren, konnte die Dynamik eines mikrokanonischen Ensembles von reaktiven Intermediaten untersucht werden. Diese Untersuchungen helfen die Energetik und Reaktionskanäle der Intermediate zu verstehen. Zusätzlich wurden Messungen mit Synchrotron- Strahlung und TPEPICO-Spektroskopie durchgeführt; vorwiegend um die IPs der Spezies zu bestimmen wurde diese Technik angewandt. Velocity-Map-Imaging wurde zusammen mit der Radikalquelle erprobt. Ergänzend zu zeitaufgelösten Photoelektronenspektren konnten mit dieser Methode neue Wege zur Optimierung der Radikalerzeugung aufgezeigt werden. Die Effizienz der Pyrolyse konnte anhand der Photoionen-Images in Echtzeit verfolgt werden. Dies vereinfacht die Darstellung reaktiver Intermediate. Die experimentellen Daten wurden mit quantenchemischen Rechnungen verglichen, um die Interpretation zu erleichtern. Des Weiteren weisen Intermediate häufig eine komplexe elektronische Struktur auf und können somit zum evaluieren quantenmechanischer Methoden verwendet werden. Die erarbeiteten experimentellen Daten können helfen die spektroskopisch untersuchten Intermediate in komplexen Reaktionsgemischen zu erkennen und ihre dynamische Rolle darin besser zu verstehen. Je mehr Information über einzelne isolierte Intermediate bekannt ist, desto einfacher können ihre Beiträge differenziert aufgeschlüsselt werden. Eine erhöhte Anzahl von Intermediaten wird vor allem an Orten mit hoher Energiedichte beobachtet (z.B. im interstellaren Raum und in Motoren). Elektronisch angeregte Zustände der Moleküle können hier durch Teilchenstöße, Strahlung oder sogar thermisch bei sehr hohen Temperaturen angeregt werden. Wie elektronisch angeregte Zustände Reaktionsmechanismen beeinflussen können, ist noch Stand aktueller Forschung.
|
Page generated in 0.0915 seconds