• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spray and Hop: Efficient Utility-Mobility Routing for Intermittently Connected Mobile Networks

Tsai, Jian-Bang 24 July 2008 (has links)
In intermittently connected mobile networks (ICMNs), where most of the time there does not exist a complete path from source to destination, or such a path is highly unstable and may change or break after it has been found (or even while being found). This kind of environment may apply to wildlife tracking sensor networks or military networks, and node on this network must find a route and communicate with other nodes by the way of moving, because the base station is too far away or destroying. In order to achieve this purpose, researchers have suggested using flooding-based routing schemes. Although these ways have high probability of delivery, but they waste a lot of network resources. This thesis proposes a routing protocol in ICMNs named Spray and Hop, and it has adopted a kind of mechanism which is named Spray. The method can reduce network overhead, and broadcast efficiently at the same time by using one name little control packages named forwarding token. In addition, in order to improve the success rate of delivery, we still apply a kind of composite Utility-based mechanism. This mechanism is to select the next best candidate relay node through node's own information, not utilizing the way of direct transmission. Spray and Hop mechanism has highly scalability, that is, this mechanism has good performance in dense and sparse networks, and does not need extra network information. Simulation results show that Spray and Hop has good performance in packet transmissions and end-to-end delay indeed, comparing to other flooding-based mechanisms.
2

Physical and Chemical Behaviour and Management of Intermittently Closed and Open Lakes and Lagoons (ICOLLs) in NSW

Haines, Philip Edward, n/a January 2006 (has links)
The term 'Intermittently Closed and Open Lake or Lagoon (ICOLL)' has been adopted in NSW to described wave dominated barrier estuaries with an intermittent connection to the ocean. ICOLLs can also be found in south east Queensland, south-west Western Australia, and some parts of Victoria and Tasmania, although they are not the dominant estuary type as in NSW. From an international perspective, ICOLLs are also found in South Africa, New Zealand, Mexico and the Atlantic coast of Brazil and Uruguay. Within NSW, ICOLLs are mostly located south of Sydney, due to the high wave activity and close proximity of the Great Dividing Range to the coast, which results in small coastal catchments and thus small fluvial and sediment runoff. The distinguishing difference between ICOLLs and other estuary types is the variable condition of their entrances, which also makes them the most sensitive type of estuary to human interference (HRC, 2002; Boyd et al., 1992). The sensitivity of ICOLLs to external inputs has been described in this thesis based on their morphometric characteristics, which includes their size, shape and predominant entrance condition. NSW ICOLLs exhibit a wide range of physical conditions. Some ICOLLs are rarely open to the ocean, while others are rarely closed. Also, some ICOLLs have experienced extensive development within their catchments, while some are located mostly or wholly within National Parks and other protected reserves. When closed, ICOLLs behave like terminal lakes, retaining and assimilating 100% of the external inputs delivered to the system. When open, tidal flushing assists with advection and dispersion of inputs, however, significant tidal attenuation across the entrance still limits opportunities for effective removal of pollutants. The majority of NSW ICOLLs are considered to be mostly closed (i.e., have a closed entrance for more than 60% of the time), while remaining ICOLLs tend to be mostly open (i.e., have a closed entrance for less than 20% of the time). Few ICOLLs have entrances that are open and closed for roughly equal proportions of time, thus resulting in a distinctive bimodal behaviour of entrance condition (i.e., mostly open or mostly closed). NSW ICOLLs tend to be mostly closed unless (i) the catchment is larger than 100km2, and/or (ii) the exposure of the entrance to ocean swell waves is less than 60 degrees and/or (iii) the entrance channel contains geomorphic controls (e.g. shallow bedrock outcrops). Unless opened artificially, ICOLLs will generally remain closed until a sufficient volume of catchment runoff accumulates within the waterway to increase water levels to a level that overtops (breaches) the entrance sand berm. Once breached, high velocity flows over the berm cause scour and the development of a formalised entrance channel, which increases exponentially until an optimum width and depth has been reached (determined by the hydrostatic head, geomorphic controls and tidal conditions at the time). Following entrance breakout and lowering of the lagoon level, sand is reworked back into the entrance under the influence of flood tides and wave processes. The environmental condition of ICOLLs has generally been assumed as being dependent on the state of the catchment and the associated input of nutrients (form and magnitude) to the system. Biogeochemical processes also are reported to influence the condition of ICOLLs, particularly denitrification, which is controlled by the organic load on the bed and the extent of benthic algae and macrophytic productivity. In addition to this, however, it is demonstrated that the predominant and prevailing entrance conditions (i.e. open or closed) also influence the physical, chemical and biological environments. ICOLLs are particularly susceptible to the impacts of future climate change. This thesis provides a description of expected impacts on NSW ICOLLs environments associated in response to future climate changes, based on a detailed appreciation of physical processes and their follow-on consequences. Impacts on ICOLLs are expected as a result of increasing sea level, altered rainfall patterns, and modified offshore wave climate. A survey of relevant government officials has revealed that more than 50% of NSW ICOLLs are artificially opened before water levels reach the height of the natural entrance sand berm. Artificial entrance opening is mostly carried out to mitigate inundation of public and/or private assets around ICOLL foreshores, such as roads, backyards, farming lands and on-site sewage (septic) systems. Truncation of the hydraulic regime of ICOLLs can modify other physical, chemical and biological processes, and can result in deleterious impacts such as the terrestrialisation of estuarine wetlands and foreshores. Few statutory environmental planning mechanisms protect ICOLLs from future degradation. This thesis has identified the key issues that potentially compromise ICOLL integrity and sustainability, which include the expected future population growth in coastal NSW (thus increasing pressure for intensification of development within ICOLL catchments), future climate change (particularly increases in sea level), and the increased demand for amenity, particularly during summer holiday periods (i.e. 'summer impacts'). A series of management models have been developed to address key issues. The models comprise a suite of strategies that target future development and existing management practices, through a range of new or modified planning instruments. Models for the future management of ICOLL entrances aim to prevent artificial openings in the long-term. This requires, however, the systematic relocation, raising or flood-proofing of public and private assets that have been established on land that is potentially subject to inundation. Increasing sea levels in the future will compound the need for improved entrance management. Pro-active, integrated and adaptive management strategies need to be implemented today to minimise the on-going conflict and potential for continued environmental degradation in the future.
3

Systèmes pair-à-pair pour l’informatique opportuniste / P2P overlay for opportunistic computing

Esnault, Armel 20 January 2017 (has links)
La multiplication du nombre d'objets, qui ont vocation à être connectés à Internet (e.g., smartphones, capteurs), et la croissance des échanges de données effectués par des individus en situation de mobilité ont conduit, et conduiront encore, à une augmentation significative du trafic de données dans les réseaux, et en particulier dans les réseaux cellulaires. Les récents progrès réalisés au niveau de la couche physique pour accroître les débits dans ces réseaux pourraient s'avérer insuffisants dans le futur avec l'émergence d'un Internet des objets. Il nous semble dès lors intéressant d'étudier des architectures réseau alternatives ou complémentaires. Les réseaux hybrides à connectivité intermittente (RHCI), qui sont constitués d'une infrastructure et de parties formées par des objets fixes ou mobiles communiquant en mode ad hoc, font partie de ces architectures qui méritent d'être étudiées. Dans cette thèse, nous étudions les bénéfices que pourrait apporter l'utilisation des techniques des réseaux pair-à-pair et des communications opportunistes dans les RHCI. Nous proposons une architecture pair-à-pair décentralisée et non structurée qui permet d'assurer les communications entre des objets dans des RHCI de grande taille via différents modes de communication. Un prototype de plateforme, baptisé Nephila a été développé, pour évaluer cette approche en simulation. / The number of devices that are likely to get connected to the Internet (e.g., smartphones, sensors), and the amount of data produced by people using these devices grow continuously, especially in cellular networks. Latest developments performed on the physical layer to increase the networks' bandwidth might be insufficient in the future, because of the emergence of the Internet of things. Therefore, it seems to be interesting to study new or complementary network architectures. Intermittently-Connected Hybrid Networks (ICHN), which are composed both of an infrastructure part and of parts formed by mobile device communicating using ad hoc mode, are examples of those architectures that deserve to be studied. In this thesis, we study benefits that peer-to-peer mechanisms and opportunistic networking techniques could bring to ICHN. We propose a decentralized unstructured peer-to-peer overlay architecture that supports communications between devices in wide ICHNs. A prototype named Nephila has been developed to evaluate this approach in simulation.
4

Modeling and analysis of the performance of collaborative wireless ad-hoc networks: an information-theoretic perspective

Subramanian, Ramanan 27 October 2009 (has links)
This work focuses on the performance characterization of distributed collaborative ad-hoc networks, focusing on such metrics as the lifetime, latency, and throughput capacity of two such classes of networks. The first part concerns modeling and optimization of static Wireless Sensor Networks, specifically dealing with the issues of energy efficiency, lifetime, and latency. We analyze and characterize these performance measures and discuss various fundamental design tradeoffs. For example, energy efficiency in wireless sensor networks can only be improved at the cost of the latency (the delay incurred during communication). It has been clearly shown that improvement in energy efficiency through data aggregation increases the latency in the network. In addition, sleep-active duty cycling of nodes (devices constituting the network), a commonly employed mechanism to conserve battery lifetime in such networks, has adverse effects on their functionality and capacity. Hence these issues deserve a detailed study. The second part of this work concerns performance modeling of Delay Tolerant Networks (DTNs) and Sparse Mobile Ad-Hoc Networks (SPMANETs) in general. We first investigate the effect of modern coding, such as the application of packet-level rateless codes, on the latency, reliability, and energy efficiency of the network. These codes provide us the means to break large messages into smaller packets thereby enabling efficient communication. The work then focuses on developing and formalizing an information-theoretic framework for Delay Tolerant- and other Sparse Mobile Networks. This is enabled by the use of an embedded-Markov-chain approach used for complex queuing-theoretic problems. An important goal of this work is to incorporate a wide range of mobility models into the analysis framework. Yet another important question will be the effect of changing the mobility on the comparative performance of networking protocols. Lastly, the framework will be extended to various communication paradigms such as two-hop vs multi-hop routing, unicast, and multicast.
5

Congestion control and routing over challenged networks

Ryu, Jung Ho 01 February 2012 (has links)
This dissertation is a study on the design and analysis of novel, optimal routing and rate control algorithms in wireless, mobile communication networks. Congestion control and routing algorithms upto now have been designed and optimized for wired or wireless mesh networks. In those networks, optimal algorithms (optimal in the sense that either the throughput is maximized or delay is minimized, or the network operation cost is minimized) can be engineered based on the classic time scale decomposition assumption that the dynamics of the network are either fast enough so that these algorithms essentially see the average or slow enough that any changes can be tracked to allow the algorithms to adapt over time. However, as technological advancements enable integration of ever more mobile nodes into communication networks, any rate control or routing algorithms based, for example, on averaging out the capacity of the wireless mobile link or tracking the instantaneous capacity will perform poorly. The common element in our solution to engineering efficient routing and rate control algorithms for mobile wireless networks is to make the wireless mobile links seem as if they are wired or wireless links to all but few nodes that directly see the mobile links (either the mobiles or nodes that can transmit to or receive from the mobiles) through an appropriate use of queuing structures at these selected nodes. This approach allows us to design end-to-end rate control or routing algorithms for wireless mobile networks so that neither averaging nor instantaneous tracking is necessary, as we have done in the following three networks. A network where we can easily demonstrate the poor performance of a rate control algorithm based on either averaging or tracking is a simple wireless downlink network where a mobile node moves but stays within the coverage cell of a single base station. In such a scenario, the time scale of the variations of the quality of the wireless channel between the mobile user and the base station can be such that the TCP-like congestion control algorithm at the source can not track the variation and is therefore unable to adjust the instantaneous coding rate at which the data stream can be encoded, i.e., the channel variation time scale is matched to the TCP round trip time scale. On the other hand, setting the coding rate for the average case will still result in low throughput due to the high sensitivity of the TCP rate control algorithm to packet loss and the fact that below average channel conditions occur frequently. In this dissertation, we will propose modifications to the TCP congestion control algorithm for this simple wireless mobile downlink network that will improve the throughput without the need for any tracking of the wireless channel. Intermittently connected network (ICN) is another network where the classic assumption of time scale decomposition is no longer relevant. An intermittently connected network is composed of multiple clusters of nodes that are geographically separated. Each cluster is connected wirelessly internally, but inter-cluster communication between two nodes in different clusters must rely on mobile carrier nodes to transport data between clusters. For instance, a mobile would make contact with a cluster and pick up data from that cluster, then move to a different cluster and drop off data into the second cluster. On contact, a large amount of data can be transferred between a cluster and a mobile, but the time duration between successive mobile-cluster contacts can be relatively long. In this network, an inter-cluster rate controller based on instantaneously tracking the mobile-cluster contacts can lead to under utilization of the network resources; if it is based on using long term average achievable rate of the mobile-cluster contacts, this can lead to large buffer requirements within the clusters. We will design and analyze throughput optimal routing and rate control algorithm for ICNs with minimum delay based on a back-pressure algorithm that is neither based on averaging out or tracking the contacts. The last type of network we study is networks with stationary nodes that are far apart from each other that rely on mobile nodes to communicate with each other. Each mobile transport node can be on one of several fixed routes, and these mobiles drop off or pick up data to and from the stationaries that are on that route. Each route has an associated cost that much be paid by the mobiles to be on (a longer route would have larger cost since it would require the mobile to expend more fuel) and stationaries pay different costs to have a packet picked up by the mobiles on different routes. The challenge in this type of network is to design a distributed route selection algorithm for the mobiles and for the stationaries to stabilize the network and minimize the total network operation cost. The sum cost minimization algorithm based on average source rates and mobility movement pattern would require global knowledge of the rates and movement pattern available at all stationaries and mobiles, rendering such algorithm centralized and weak in the presence of network disruptions. Algorithms based on instantaneous contact, on the contrary, would make them impractical as the mobile-stationary contacts are extremely short and infrequent. / text
6

Dissémination multi-contenus opportuniste : monitorage passif et adaptation aux conditions du réseau / Opportunistic multi-content dissemination : Passive monitoring and adaptation to network conditions

Sammarco, Matteo 28 May 2014 (has links)
La pénétration du marché des appareils mobiles a connu une croissance impressionnante ces dernières années. Smartphones, tablettes et ordinateurs portables sont devenus soit producteurs soit consommateurs de contenus générés par les utilisateurs. Les communications opportunistes permettent une couverture étendue dans les endroits où il n'existe aucune infrastructure réseau disponible et des stratégies de délestage de données pour aider les opérateurs à soulager la charge de leurs infrastructures. Dans cette thèse, nous considérons le cas de la diffusion opportuniste de plusieurs grands contenus d'un point de vue expérimental. Dans la première partie nous commençons par implémenter EPICS, un protocole réseau conçu pour l'échange opportuniste de grands contenus, dans des terminaux Android. Après sa évaluation nous proposons DAD, un nouveau protocole, qui envoie une rafale de paquets de données de façon adaptative. Nous comparons les deux protocoles expérimentalement et, à l'aide des traces de contacts, soit réelles, soit synthétiques, nous obtenons des gains importants avec cette nouvelle approche. La deuxième partie est dédiée au passage à l'échelle des systèmes de surveillance passive. Nous proposons deux approches. La première est basée sur la similarité des traces et des algorithmes de détection de communautés. La deuxième est basée sur des mesures collaboratives. / The market penetration of mobile devices has experienced an impressive growth. Smartphones, tablets, and laptops have become both producers and consumers of user-generated contents. They also motivate novel communication paradigms such as the possibility to establish, in an opportunistic fashion, direct device-to-device links whenever two mobile nodes enter within the wireless range of each other. In this thesis, we consider the case of opportunistic dissemination of multiple large contents from an experimental point of view. This implies revisiting, among others, the common assumption that contacts have enough capacity to transfer any amount of data.In the first part of this thesis, we start from an Android implementation of EPICS, a network protocol designed for exchanging large contents in opportunistic networks, on off-the-shelf devices. After an deep analysis of application-level logs and captured wireless traces we found out limitations and uncovered improving possibilities. We then propose DAD, a new content dissemination protocol that adaptively sends bursts of data instead of the per-fragment transmission strategy of EPICS.The second part of this thesis deals with the scalability of legacy WLAN monitoring systems. We propose two original approaches. With the first one, based on trace similarity and community detection algorithms, we are able to identify how many monitor we need in a target area and where to place them. The second approach in based on collaborative measurements. In this case we face the risk of biased measures due attacks of malicious users generating adulterated traces. We then propose a method to detect such malicious behaviors.
7

Contribution to the multi-physics study of porous media heated intermittently by RF energy in a coaxial cell / Contribution à l'étude multi-physique du chauffage de milieux poreux par énergie radiofréquence intermittente dans une cellule coaxiale

Wu, Li 17 December 2015 (has links)
Avec l'explosion économique et démographique, le besoin en matériaux poreux tels que la nourriture, le bois ou la brique connait une croissance telle que leur commerce est très actif dans le monde entier. La déshydratation des milieux poreux étant l'une des plus importantes et stables méthodes pour leur préservation, il est parfois nécessaire d'utiliser cette méthode pour stocker, transporter et mieux utiliser ces matériaux. Depuis la Seconde Guerre Mondiale, il existe des méthodes de chauffage RF dans bien des domaines. Bien que beaucoup de nouvelles technologies de chauffage sont devenues extrêmement importantes du point de vue commercial et très largement utilisées, le chauffage RF est préféré aux autres moyens de chauffage pour plusieurs raisons: 1) le résultat est plus rapide, nécessitant un moindre temps pour atteindre la température désirée; 2) le chauffage radiofréquence peut être spatialement plus uniforme que les méthodes conventionnelles de chauffage; 3) le chauffage par radiofréquences peut être allumé ou éteint instantanément; 4) il est plus efficace pour un grand volume de nourriture; 5) l'investissement nécessaire est moindre, etc. Cependant on trouve très peu d'information sur le chauffage radiofréquence pour la déshydratation des matériaux poreux dans la littérature. Par conséquent, il est intéressant d'étudier les interactions entre les radiofréquences et les milieux poreux. Afin d'améliorer le taux d'énergie radiofréquence utilisé, cette thèse propose une cavité coaxiale pour étudier le cycle de chauffage radiofréquence d'une pomme de terre dans différents états : solide, liquide et gazeux. Dans un premier temps nous avons étudié les mécanismes de transport de masse et de chaleur dans le milieu poreux sans radiofréquence sur le modèle d'une brique 1D à l'aide d'un code Matlab. Les résultats de simulation ont été comparés qualitativement avec ceux du papier de référence. A partir de ce modèle, nous avons construit et simulé un modèle 2D axisymétrique avec le chauffage radiofréquence périodique d'une pomme de terre. L’équation de Landau et Lifshitz, Looyenga a été utilisées pour prédire le changement de permittivité effective dans la simulation car il est difficile d'obtenir une donnée précise pour un milieu poreux. La salinité de l'échantillon chauffé (qui est une caractéristique très importante) a été estimée. Les effets de différentes périodes, hauteurs de l'échantillon et puissances de la distribution en température ont été étudiés et analysés. Nous avons également mené des expériences similaires pour mesurer les changements de température durant le processus de chauffage. Tous les résultats de simulations sont comparés qualitativement avec les résultats mesurés. De même nous avons effectué des analyses de sensibilité et en avons conclu quelques suggestions concernant l'amélioration des effets du chauffage. A partir de ces suggestions, nous avons proposé un nouveau modèle de chauffage radiofréquence afin de s'affranchir des défauts du modèle précédent. / With the rapid growth of economic and population explosion, the demands for porous media such as foods, woods and bricks enlarge so wildly that their trades are busy around the world. To be stored, transported and utilized better, dehydration of porous media is necessary since drying is one of the most important and stable methods for preserving materials. After World War two, possible RF heating in many domains was suggested. Even though a lot of novel heating technologies have become extremely commercially important and been widely used, RF heating is preferred to the other heating means for several significant reasons: 1) it is rapid and requires less time to come up to the desired process temperature; 2) radio frequency heating may be relatively spatially more uniform than conventional heating; 3) radio frequency heating systems can be turned on or off instantly; 4) it is better for large, thick food; 5) it requires lower investment costs, and so on. However, little information on radio frequency heating for commercial drying of porous media is available in the published literature. Therefore, it will be interesting to research the interaction between RF and porous media. This thesis, to improve the use ratio of RF energy further, proposed a coaxial cell to research RF cycling heating potato with different phases: solid, liquid and gas. The mechanism of mass and heat transport in the porous media without RF energy was studied first by solving the governing equations of 1D brick model with Matlab codes. The calculated results compared qualitatively with those in the reference paper. Based on that model, an axisymmetric 2D model with periodically RF heating potato was built and simulated. Landau and Lifshitz, Looyenga equation was employed to predict the effective permittivity change in the simulation since it is difficult to get the accurate measurement data of porous media. The salinity of heated sample- a very important parameter of the mixing rule-was estimated. The effects of different process period, variation of height of sample and power on the temperature distributions were studied and analyzed. Corresponding experiments were also conducted to measure the temperature change during the heating process. All the simulated results compared qualitatively with the measured ones. Sensitivity analysis was also done and some suggestions on the improvement of heating effect were concluded. Based on the suggestions, a new RF heating model was proposed to overcome the drawbacks of our previous model.
8

考慮時間價值的兩階段群組訊息網路編碼的散播機制 / A two-phase network coding design for mobile time-valued group-message dissemination

劉亭侁, Liu, Ting Shen Unknown Date (has links)
現今因無線通訊技術的進步,使得人們能方便地利用智慧型裝置透過3G,4G和Wi-Fi等技術彼此溝通聊天。其中,聊天應用是最受智慧型裝置使用者歡迎的應用程式。大部分的聊天應用程式需依賴網路以達到訊息交換的目的。然而網路的頻寬是非常有限的,當使用者處在擁擠的環境中時,他們可能會面臨資源耗盡問題。此外,例如在漫遊的情況下有些使用者並沒有行動網路的存取,導致使用者無法使用聊天應用。 因此我們希望利用無線廣播傳輸的特性,開發一個應用於間歇性網路連接的聊天應用程式。然而,廣播傳輸的散播策略若沒有設計得宜,可能導致廣播風暴的問題,使得整體網路效能低落。我們研究的目標是要如何在間歇性網路增加訊息的傳輸效率。為了達成此目標,在我們的研究中考量了許多技術要求,如:訊息具有截止時間與優先權特性、多聊天室應用、傳輸效率。 我們提出了一種兩階段基於網絡編碼設計的訊息散播方法,實現在機會性社群網路中的訊息散播。網絡編碼階段,提高網路頻寬的傳輸效率,也能增加網路傳輸的可靠性;預熱階段能提升網路編碼訊息被解開的機率。最後,利用政大的真實軌跡紀錄評估我們所設計的訊息傳播方法。結果顯示,我們的方法是有效率且優於氾濫式的路由協議和一般的網絡編碼散播技術。 / Nowadays, the advancement of wireless communication technology has allowed people to use smart phones to communicate with each other more easily via 3G/4G, Wi-Fi, etc. One kind of popular mobile Apps is “chat” App. Most chat Apps rely on the Internet to exchange the messages. However, the bandwidth of network is limited in some circumstances. When users stay in the crowded environment, they will face the resource depletion problem. Besides, some people may not subscribe to any cellular network access, e.g. in roaming scenarios. Therefore, we want to develop a novel mobile Chat APP in intermittently connected networks. We utilize the characteristic of the wireless broadcast transmission. However, it may cause the broadcast storm problem without careful design. How to increase the efficiency of message delivery in such intermittently connected networks is our research goal. To achieve this, technical issues in our research involve message priority, multi-chatroom, deadline and transmission efficiency. We proposed a two-phase network coding design for message dissemination to enable the multi-hop instant messaging in Opportunistic Mobile Social Networks. The network coding phase can increase the bandwidth utility and transmission efficiency. Moreover, it can improve transmission robustness and adaptability. The warm up phase can increase the decoding probability of coded packets. Finally, we evaluated our approach with real trace data from NCCU. The results showed that our approach is effective and superior to the flooding based routing protocol and the pure network coding technique.

Page generated in 0.2365 seconds