1 |
INFRARED OBSERVATIONS OF INTERSTELLAR MOLECULAR HYDROGENGautier, Thomas N. (Thomas Nicholas), 1764-1848. January 1978 (has links)
No description available.
|
2 |
An investigation into the optical fluorescence of interstellar HIReynolds, Ronald Jay, January 1971 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1971. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 125-126).
|
3 |
The catalytic production of interstellar molecular hydrogen /Tabak, Ronald G. January 1976 (has links)
No description available.
|
4 |
Radio studies of ionized hydrogen in the southern Milky WayGaylard, Michael John January 1990 (has links)
This thesis describes the results of a survey of the HI42ɑ recombination line emission at 2.3 GHz from HII regions in the Southern Milky Way, carried out with the 26 m diameter Hartebeesthoek radio telescope. The Galactic Longitude range covered was 290° to 40°. Single recombination lines were detected from 375 positions. Multiple lines were observed towards 90 positions in the inner Galaxy. No line emission could be detected in 28 positions. Continuum antenna temperatures were estimated from drift scans or radio maps observed for the purpose. LTE electron temperatures and turbulent velocities of the HII regions were calculated where possible. The properties of the sample were compared to those observed in HI09ɑ surveys. The lines observed from over 50 positions were first detections, of which half were associated with optically-identified HII regions. In about 150 cases the lines were only the second to be detected from those HII regions. The processes of the radio emission, detection, and analysis were simulated numerically. The detectability of the emission and the magnitude of non-LTE effects and pressure-broadening in multi-component HII regions was predicted and compared to observations. The radio luminosity function of the HII regions was determined over a range of three orders of magnitude in intrinsic brightness for the first time, using techniques which corrected for different types of incompleteness in the samples. The luminosity function was compared to those in five selected spiral galaxies, and shown to lie between those of M33 and M81. An alternate form of the luminosity function was developed for use with a numerical model of the spiral arm structure of the Milky Way. The physical parameters defining the major spiral arms were established by comparing synthesized diagrams of radial velocity versus Galactic Longitude with those actually observed. The faint, extended HII regions S9 and RCW129 in Scorpius, the Barnard Loop in Orion, and S296 in Canis Major were analyzed, using all available data. All the recombination lines from these HII regions were first detections
|
5 |
The nature of luminous IRAS galaxiesDePoy, Darren Lee January 1987 (has links)
Typescript. / Includes bibliographies. / Photocopy. / Microfilm. / xi, 175 leaves, bound ill. 29 cm
|
6 |
Grain surface chemistry in astrophysical objects : from H₂ to complex molecules /Cazaux, Stéphanie Michelle. January 2004 (has links)
Thesis (Doctoral)--Rijksuniversiteit Groningen, 2004. / Includes bibliographical references (p. [131]-137).
|
7 |
Star formation and galaxy evolution of the local universe based on HIPASS /Wong, Oiwei Ivy. January 2007 (has links)
Thesis (Ph.D.)--University of Melbourne, School of Physics, 2008. / Typescript. Includes bibliographical references (leaves 161-176).
|
8 |
Dynamical and physical conditions of stellar formation : a study of H2O masers associated with galactic H [subscript II] regionsReisz, Albert Colbert January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Science. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 129-133. / by A. Colbert Reisz. / Ph.D.
|
9 |
Computational Studies on Interstellar Molecular Species : From Formation to DetectionEtim, Emmanuel Edet January 2016 (has links) (PDF)
Initiated with the purpose of assigning the Fraunhofer lines in the solar spectrum to atomic transitions in the 18th century, the collaboration between spectroscopists and astrophysicists has remained fruitful, successful and ever fascinating. This collaboration has resulted in the unique detection of over 200 different molecular species in the interstellar medium (ISM). These interstellar molecular species play significant roles in diverse fields such as atmospheric chemistry, astrochemistry, prebiotic chemistry, astrophysics, astronomy, astrobiology, etc, and in our understanding of the solar system ''the world around us''. This Thesis work focuses on understanding of the different aspects of the chemistry of the various classes of these molecular species.
Chapter one starts with an historical perspective of what is now regarded as Molecular Astrophysics or Astrochemistry and discusses the interstellar medium and its properties; interstellar molecular species and their importance; molecular spectroscopy as an indispensible tool in interstellar chemistry and the different formation routes of these molecular species. It also discusses hydrogen bonding which is one of the most important of all the intermolecular interactions. The chapter ends by setting the stage for the present investigations.
The chapter two of the Thesis saddled with the task of describing the methodology employed in this Thesis begins by setting the stage on the importance of computational chemistry in interstellar chemistry. It discusses the Gaussian 09 suite of programs and the various theoretical methods used in all the quantum chemical calculations reported in this Thesis. The chapter ends with a brief summary on the homebuilt Pulsed Nozzle Fourier Transform Microwave (PN-FTMW) spectrometer used for the preliminary studies on Isoprene...Argon weakly bound complex reported in the appendix.
After the introductory chapters, chapter three begins with what is unarguably one of the most important classes of interstellar molecular species - 'interstellar isomers'. In this chapter, the Energy, Stability and Abundance (ESA) relationship existing among interstellar molecular species has been firmly established using accurate thermochemical parameters obtained with the composite models and reported observational data. From the relationship, “Interstellar abundances of related species are directly proportional to their stabilities in the absence of the effect of interstellar hydrogen bonding”. The immediate consequences of the relationship in addressing some of the questions in interstellar chemistry such as: Where are Cyclic Interstellar Molecules? What are the possible candidates for astronomical observation? Why are more Interstellar Cyanides than isocyanides? among others are briefly discussed. Following the ESA relationship, other studies addressing some of the whys and wherefores in interstellar chemistry are discussed in details. From ESA relationship, though there has not been any successful astronomical observation of any heterocycle, the ones so far searched remain the best candidates for astronomical observation in their respective isomeric groups. The observation of the first branched chain molecule in
ISM is in agreement with the ESA relationship and the C5H9N isomers have been shown to contain potential branched chain interstellar molecules. That molecules with the C-C-O backbone have less potential of formation in ISM as compared to their counterparts with the C-O-C backbone has been demonstrated not to be true following the ESA relationship. A detailed investigation on the relationship between molecular partition function and astronomical detection of isomeric species (or related molecules) shows that there is no direct correlation between the two rather there is a direct link between the thermodynamic stability of the isomeric species (or related molecules) and their interstellar abundances which influences the astronomical observation of some isomers at the expense of others.
Chapter four presents an interesting and a fascinating phenomenon among the interstellar molecular species as it discusses for the first time, the existence and effects of Interstellar Hydrogen Bonding. This interstellar hydrogen bonding is shown to be responsible for the deviations from thermodynamically controlled processes, delayed observation of the most stable isomers, unsuccessful observations of amino acids among other happenings in interstellar chemistry and related areas. On the prediction that ketenes are the right candidates for astronomical searches among their respective isomers, a ketenyl radical; HCCO has recently been detected in line with this prediction. The deviation from the rule that the ratio of an interstellar sulphur molecule to its oxygen analogue is close to the cosmic S/O ratio is well accounted for on the basis of hydrogen bonding on the surface of the dust grains. Detecting weakly bound complexes in ISM has not been a major interest in the field so far but the detectability of weakly bound complexes in ISM is very possible as discussed in this chapter. Following the conditions in which these complexes are observed in the terrestrial laboratory as compared to the ISM conditions; it suffices to say that weakly bound complexes are present and are detectable in ISM. They could even account for some of the 'U' lines.
Chapter five of the Thesis discusses the Linear Interstellar Carbon Chains which are the dominant theme in interstellar chemistry accounting for over 20% of all the known interstellar and circumstellar molecular species. Accurate spectroscopic parameters within experimental accuracy of few kHz which are the indispensable tools for the astronomical observation of these molecular species; are obtained for over 200 different species from the various chains using an inexpensive combined experimental and theoretical approach. With the availability of the spectroscopic parameters; thermodynamics is utilized in accounting for the known systems and in examining the right candidates for astronomical searches. These molecular species are shown to also obey the ESA relationship observed for the isomeric species discussed in chapter three of this work. The effect of kinetics on the formation processes of these molecular species is well controlled by thermodynamics as discussed in this chapter. Finally, the application of these studies in reducing the 'U' lines and probing new molecular species has been briefly summarized.
Chapter six discusses Interstellar Ions and Isotopologues which are two unique classes of interstellar molecular species. Different studies on interstellar ions and isotopologues are presented. From the studies on interstellar protonated species with over 100 molecular species; protonated species resulting from a high proton affinity prefers to remain protonated
rather than transferring a proton and returning to its neutral form as compared to its analogue that gives rise to a lower proton affinity from the same neutral species. The studies on detectable interstellar anions account for the known interstellar anions and predict members of the C2nO-, C2nS-, C2n-1Si-, HC2nN-, CnP-, and C2n chains as outstanding candidates for astronomical observation including the higher members of the C2nH- and C2n-1N- groups whose lower members have been observed. From high level ab initio quantum chemical calculations; ZPE and Boltzmann factor have been used to explain the observed deuterium enhancement and the possibility of detecting more deuterated species in ISM. Though all the heterocycles that have so far been searched for in ISM have been shown to be the right candidates for astronomical observation as discussed in the ESA relationship, they have also been shown to be strongly bonded to the surface of the interstellar dust grains thereby reducing their abundances, thus, contributing to their unsuccessful detection except for furan which is less affected by hydrogen bonding. The D-analogues of the heterocycles are shown from the computed Boltzmann factor to be formed under the dense molecular cloud conditions where major deuterium fractionation dominates implying very high D/H ratio above the cosmic D/H ratio which suggests the detectability of these deuterated species.
Chapter seven examines the isomerization of the most stable isomer (which is probably the most abundant) to the less stable isomer(s) as one of the plausible formation routes for interstellar molecular species. An extensive investigation on the isomerization enthalpies of 243 molecular species from 64 isomeric groups is reported. From the results, the high abundances of the most stable isomers coupled with the energy sources in interstellar medium drive the isomerization process even for relative enthalpy difference as high as 67.4 kcal/mol. Specifically, the cyanides and their corresponding isocyanides pairs appear to be effectively synthesized via this process. The following potential interstellar molecules; CNC, NCCP, c-C5H, methylene ketene, methyl Ketene, CH3SCH3, C5O, 1,1-ethanediol, propanoic acid, propan-2-ol and propanol are identified and discussed. In all the isomeric groups, isomerization appears to be an effective route for the formation of the less stable isomers (which are probably less abundant) from the most stable ones.
Chapter eight summarizes the conclusions drawn from the different studies presented in this Thesis and also highlights some of the future directions of these studies. The first appendix presents the preliminary study on Isoprene...Ar weakly bound complex while the second appendix contains a study on interstellar C3S describing the importance of accurate dipole moment in calculating interstellar abundances of molecular species and in astrophysical and astronomical models.
|
Page generated in 0.1279 seconds