• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inelastic Deformation Demands On Moment-resisting Frame Structures

Metin, Asli 01 August 2006 (has links) (PDF)
Interstory drift ratio is an important parameter for the determination of the structural performance under strong ground motions. A probabilistic procedure is proposed in this study to estimate the inelastic maximum interstory drift ratio. The procedure considers the uncertainties associated with the strong ground motions and structural behavior. Elastic and inelastic response history analyses of reinforced-concrete, moment-resisting frames are used together with a near-fault strong ground motion data set to derive the probabilistic procedure. The elastic and inelastic response history analysis results are evaluated in a statistical manner to present the probabilistic approach proposed here. The method presented basically makes use of the fundamental mode properties of the frame systems and modifies the elastic maximum interstory drift ratio by a modifying factor that is determined from the idealized lateral strength capacity (pushover analysis) of the structure. As a part of this thesis, the performance of recently improved nonlinear static procedures that are used in estimating the deformation demands on structural systems are also evaluated using the single- and multi-degree-of-freedom response history analyses results obtained during the conduct of the study.
2

Simple Models For Drift Estimates In Framed Structures During Near-field Earthquakes

Erdogan, Burcu 01 September 2007 (has links) (PDF)
Maximum interstory drift and the distribution of this drift along the height of the structure are the main causes of structural and nonstructural damage in frame type buildings subjected to earthquake ground motions. Estimation of maximum interstory drift ratio is a good measure of the local response of buildings. Recent earthquakes have revealed the susceptibility of the existing building stock to near-fault ground motions characterized by a large, long-duration velocity pulse. In order to find rational solutions for the destructive effects of near fault ground motions, it is necessary to determine drift demands of buildings. Practical, applicable and accurate methods that define the system behavior by means of some key parameters are needed to assess the building performances quickly instead of detailed modeling and calculations. In this study, simple equations are proposed in order for the determination of the elastic interstory drift demand produced by near fault ground motions on regular and irregular steel frame structures. The proposed equations enable the prediction of maximum elastic ground story drift ratio of shear frames and the maximum elastic ground story drift ratio and maximum elastic interstory drift ratio of steel moment resisting frames. In addition, the effects of beam to column stiffness ratio, soft story factor, stiffness distribution coefficient, beam-to-column capacity ratio, seismic force reduction factor, ratio of pulse period to fundamental period, regular story height and number of stories on elastic and inelastic interstory drift demands are investigated in detail. An equation for the ratio of maximum inelastic interstory drift ratio to maximum elastic interstory drift ratio developed for a representative case is also presented.

Page generated in 0.0826 seconds