1 |
Décomposition modale empirique et décomposition spectrale intrinsèque : applications en traitement du signal et de l’image / Empirical mode decomposition and spectral intrinsic decomposition : applications in signal and image processingThioune, Abdoulaye 19 November 2015 (has links)
Dans cette thèse, il est question d'une étude sur les méthodes d'analyse temps fréquence, temps échelle et plus particulièrement sur la décomposition modale empirique en faisant d'abord un parcours sur les méthodes traditionnelles, de l'analyse de Fourier à la transformée en ondelettes, notamment la représentation multi-résolution. Le besoin d'une précision sur les mesures aussi bien dans l'espace temporel que dans l'espace fréquentiel a toujours été une préoccupation majeure. En fait, la transformation de Fourier ne permet pas de concilier la description fréquentielle et la localisation dans le temps. La transformée de Fourier à court terme (TFCT) et ses dérivées - notamment le spectrogramme - ont depuis longtemps été les méthodes temps-fréquence les plus utilisées dans les applications pratiques. Il faut cependant reconnaître que malgré ses nombreux aspects séduisants, ces techniques sont naturellement limitées par le fait qu'elles se sont montrées inefficaces pour l'analyse de signaux non-stationnaires. La transformée en ondelettes a connu un grand succès ces dernières décennies avec le nombre important de ses applications en traitement du signal et de l'image. Malgré son efficacité dans la représentation et la manipulation des signaux, même non-stationnaires, une connaissance a priori sur le signal à décomposer est nécessaire pour un choix d'ondelette adéquat à chaque type de signal. La décomposition modale empirique - EMD pour Empirical Mode Decomposition - est une méthode de décomposition de signaux non-stationnaires ou issus de systèmes non linéaires, en une somme de modes, chaque mode étant localisé en fréquence. Cette décomposition est associée à une transformation de Hilbert-Huang (HHT) dans le but d'extraire localement une fréquence instantanée et une amplitude instantanée. Elle s'apparente à la décomposition en ondelettes avec l'avantage supplémentaire que constitue son auto-adaptabilité. Dans la suite de ces travaux, nous avons introduit une nouvelle méthode de décomposition basée sur une décomposition spectrale d'un opérateur d'interpolation basé sur les équations aux dérivées partielles. La nouvelle méthode appelée Décomposition Spectrale Intrinsèque, - SID, pour Spectrale Intrinsic Decomposition - est auto-adaptative et est plus générale que le principe de base de la Décomposition Modale Empirique. La méthode SID permet de produire un dictionnaire de Fonction Mode Spectrale Propre, en - anglais Spectral Proper Mode Function (SPMF) - qui sont semblables à des atomes dans les représentations parcimonieuses / In this thesis, it is about a study on the time-frequency, time-scale analysis methods and more particularly on Empirical Mode Decomposition (EMD), by first a course on traditional methods from Fourier analysis to wavelets, including the multiresolution representation. The need for precision measurements both in time space and in frequency space has always been a major preoccupation. In fact, the Fourier transformation does not reconcile the frequency description and location in time. The Short-Term Fourier Transform (STFT) and its derivatives - including the spectrogram - have long been the most used in practical applications. It must be recognized that despite its many attractive aspects, these technics are naturally limited by the fact that they were ineffective for non-stationary signals analysis. The wavelet transform has been very successful in recent decades with the large number of its applications in signal and image processing. Despite its effectiveness in the representation and manipulation of signals, even non-stationary, a priori knowledge about the signal to be decomposed is necessary for an appropriate wavelet choice for each type of signal. The empirical mode decomposition (EMD) is a decomposition method of non-stationary or from non-linear systems signals, in an amount of modes, each mode being localized in frequency. This decomposition is associated with a Hilbert-Huang transformation (HHT) to locally extract instantaneous amplitude and instantaneous frequency. It is similar to the wavelet decomposition with the added benefit that constitutes its auto-adaptability. In the remainder of this work, we introduced a new decomposition method based on a spectral decomposition of an interpolation intrinsic operator. The new method called Spectral Decomposition Intrinsic (SID) is auto-adaptive and is more general than the basic principle of Empirical Mode Decomposition. The SID method can produce a dictionary of Spectral Proper Mode Functions (SPMF) that are similar to atoms in sparse representations
|
Page generated in 0.1343 seconds