• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 214
  • 61
  • 32
  • 11
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 437
  • 437
  • 221
  • 177
  • 143
  • 140
  • 120
  • 94
  • 87
  • 84
  • 69
  • 63
  • 59
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Ontology mapping: a logic-based approach with applications in selected domains

Wong, Alfred Ka Yiu, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
In advent of the Semantic Web and recent standardization efforts, Ontology has quickly become a popular and core semantic technology. Ontology is seen as a solution provider to knowledge based systems. It facilitates tasks such as knowledge sharing, reuse and intelligent processing by computer agents. A key problem addressed by Ontology is the semantic interoperability problem. Interoperability in general is a common problem in different domain applications and semantic interoperability is the hardest and an ongoing research problem. It is required for systems to exchange knowledge and having the meaning of the knowledge accurately and automatically interpreted by the receiving systems. The innovation is to allow knowledge to be consumed and used accurately in a way that is not foreseen by the original creator. While Ontology promotes semantic interoperability across systems by unifying their knowledge bases through consensual understanding, common engineering and processing practices, it does not solve the semantic interoperability problem at the global level. As individuals are increasingly empowered with tools, ontologies will eventually be created more easily and rapidly at a near individual scale. Global semantic interoperability between heterogeneous ontologies created by small groups of individuals will then be required. Ontology mapping is a mechanism for providing semantic bridges between ontologies. While ontology mapping promotes semantic interoperability across ontologies, it is seen as the solution provider to the global semantic interoperability problem. However, there is no single ontology mapping solution that caters for all problem scenarios. Different applications would require different mapping techniques. In this thesis, we analyze the relations between ontology, semantic interoperability and ontology mapping, and promote an ontology-based semantic interoperability solution. We propose a novel ontology mapping approach namely, OntoMogic. It is based on first order logic and model theory. OntoMogic supports approximate mapping and produces structures (approximate entity correspondence) that represent alignment results between concepts. OntoMogic has been implemented as a coherent system and is applied in different application scenarios. We present case studies in the network configuration, security intrusion detection and IT governance & compliance management domain. The full process of ontology engineering to mapping has been demonstrated to promote ontology-based semantic interoperability.
332

A framework for system fingerprinting

Radhakrishnan, Sakthi Vignesh 29 March 2013 (has links)
The primary objective of the proposed research is to develop a framework for smart and robust fingerprinting of networked systems. Many fingerprinting techniques have been proposed in the past, however most of these techniques are designed for a specific purpose, such as Operating System (OS) fingerprinting, Access Point (AP) fingerprinting, etc. Such standalone techniques often have limitations which render them dysfunctional in certain scenarios or against certain counter measures. In order to overcome such limitations, we propose a fingerprinting framework that can combine multiple fingerprinting techniques in a smart manner, using a centralized decision making engine. We believe that any given scenario or a counter measure is less likely to circumvent a group of diverse fingerprinting techniques, which serves as the primary motivation behind the aforementioned method of attack. Another major portion of the thesis concentrates on the design and development of a device and device type fingerprinting sub-module (GTID) that has been integrated into the proposed framework. This sub-module used statistical analysis of packet inter arrival times (IATs) to identify the type of device that is generating the traffic. This work also analyzes the performance of the identification technique on a real campus network and propose modifications that use pattern recognition neural networks to improve the overall performance. Additionally, we impart capabilities to the fingerprinting technique to enable the identification of 'Unknown' devices (i.e., devices for which no signature is stored), and also show that it can be extended to perform both device and device type identification.
333

A Novel Method For The Detection Of P2p Traffic In The Network Backbone Inspired By Intrusion Detection Systems

Soysal, Murat 01 June 2006 (has links) (PDF)
The share of peer-to-peer (P2P) protocol in the total network traffic grows dayby- day in the Turkish Academic Network (UlakNet) similar to the other networks in the world. This growth is mostly because of the popularity of the shared content and the great enhancement in the P2P protocol since it first came out with Napster. The shared files are generally both large and copyrighted. Motivated by the problems of UlakNet with the P2P traffic, we propose a novel method for P2P traffic detection in the network backbone in this thesis. Observing the similarity between detecting traffic that belongs to a specific protocol and detecting an intrusion in a computer system, we adopt an Intrusion Detection System (IDS) technique to detect P2P traffic. Our method is a passive detection procedure that uses traffic flows gathered from border routers. Hence, it is scalable and does not have the problems of other approaches that rely on packet payload data or transport layer ports.
334

A New Approach For The Scalable Intrusion Detection In High-speed Networks

Sahin, Umit Burak 01 December 2007 (has links) (PDF)
As the networks become faster and faster, the emerging requirement is to improve the performance of the Intrusion Detection and Prevention Systems (IDPS) to keep up with the increased network throughput. In high speed networks, it is very difficult for the IDPS to process all the packets. Since the throughput of IDPS is not improved as fast as the throughput of the switches and routers, it is necessary to develop new detection techniques other than traditional techniques. In this thesis we propose a rule-based IDPS technique to detect Layer 2-4 attacks by just examining the flow data without inspecting packet payload. Our approach is designed to work as an additional component to existing IDPS as we acknowledge that the attacks at Layer 5 and above require payload inspection. The rule set is constructed and tested on a real network to evaluate the performance of the system.
335

Distributed and cooperative intrusion detection in wireless mesh networks

Morais, Anderson 28 November 2012 (has links) (PDF)
Wireless Mesh Network (WMN) is an emerging technology that is gaining importance among traditional wireless communication systems. However, WMNs are particularly vulnerable to external and insider attacks due to their inherent attributes such as open communication medium and decentralized architecture. In this research, we propose a complete distributed and cooperative intrusion detection system for efficient and effective detection of WMN attacks in real-time. Our intrusion detection mechanism is based on reliable exchange of network events and active cooperation between the participating nodes. In our distributed approach, Intrusion Detection Systems (IDSs) are independently placed at each mesh node to passively monitor the node routing behavior and concurrently monitor the neighborhood behavior. Based on that, we first implement a Routing Protocol Analyzer (RPA) that accuracy generates Routing Events from the observed traffic, which are then processed by the own node and exchanged between neighboring nodes. Second, we propose a practical Distributed Intrusion Detection Engine (DIDE) component, which periodically calculates accurate Misbehaving Metrics by making use of the generated Routing Events and pre-defined Routing Constraints that are extracted from the protocol behavior. Third, we propose a Cooperative Consensus Mechanism (CCM), which is triggered among the neighboring nodes if any malicious behavior is detected. The CCM module analyzes the Misbehaving Metrics and shares Intrusion Detection Results among the neighbors to track down the source of intrusion. To validate our research, we implemented the distributed intrusion detection solution using a virtualized mesh network platform composed of virtual machines (VMs) interconnected. We also implemented several routing attacks to evaluate the performance of the intrusion detection mechanisms
336

An aggregative approach for scalable detection of DoS attacks

Hamidi, Alireza 22 August 2008 (has links)
If not the most, one of the serious threats to data networks, particularly pervasive commercial networks such as Voice-over-IP (VoIP) providers is Denial-of-Service (DoS) attack. Currently, majority of solutions for these attacks focus on observing detailed server state changes due to any or some of the incoming messages. This approach however requires significant amount of server’s memory and processing time. This results in detectors not being able to scale up to the network edge points that receive millions of connections (requests) per second. To solve this problem, it is desirable to design stateless detection mechanisms. One approach is to aggregate transactions into groups. This research focuses on stateless scalable DoS intrusion detection mechanisms to obviate keeping detailed state for connections while maintaining acceptable efficiency. To this end, we adopt a two-layer aggregation scheme termed Advanced Partial Completion Filters (APCF), an intrusion detection model that defends against DoS attacks without tracking state information of each individual connection. Analytical as well as simulation analysis is performed on the proposed APCF. A simulation test bed has been implemented in OMNET++ and through simulations it is observed that APCF gained notable detection rates in terms of false positive and true positive detections, as opposed to its predecessor PCF. Although further study is needed to relate APCF adjustments to a certain network situation, this research shows invaluable gain to mitigate intrusion detection from not so scalable state-full mechanisms to aggregate scalable approach.
337

Correlation-based Botnet Detection in Enterprise Networks

Gu, Guofei 07 July 2008 (has links)
Most of the attacks and fraudulent activities on the Internet are carried out by malware. In particular, botnets, as state-of-the-art malware, are now considered as the largest threat to Internet security. In this thesis, we focus on addressing the botnet detection problem in an enterprise-like network environment. We present a comprehensive correlation-based framework for multi-perspective botnet detection consisting of detection technologies demonstrated in four complementary systems: BotHunter, BotSniffer, BotMiner, and BotProbe. The common thread of these systems is correlation analysis, i.e., vertical correlation (dialog correlation), horizontal correlation, and cause-effect correlation. All these Bot* systems have been evaluated in live networks and/or real-world network traces. The evaluation results show that they can accurately detect real-world botnets for their desired detection purposes with a very low false positive rate. We find that correlation analysis techniques are of particular value for detecting advanced malware such as botnets. Dialog correlation can be effective as long as malware infections need multiple stages. Horizontal correlation can be effective as long as malware tends to be distributed and coordinated. In addition, active techniques can greatly complement passive approaches, if carefully used. We believe our experience and lessons are of great benefit to future malware detection.
338

Denial of service : prevention, modelling and detection

Smith, Jason January 2007 (has links)
This research investigates the denial of service problem, in the context of services provided over a network, and contributes to improved techniques for modelling, detecting, and preventing denial of service attacks against these services. While the majority of currently employed denial of service attacks aim to pre-emptively consume the network bandwidth of victims, a significant amount of research effort is already being directed at this problem. This research is instead concerned with addressing the inevitable migration of denial of service attacks up the protocol stack to the application layer. Of particular interest is the denial of service resistance of key establishment protocols (security protocols that enable an initiator and responder to mutually authenticate and establish cryptographic keys for establishing a secure communications channel), which owing to the computationally intensive activities they perform, are particularly vulnerable to attack. Given the preponderance of wireless networking technologies this research hasalso investigated denial of service and its detection in IEEE 802.11 standards based networks. Specific outcomes of this research include: - investigation of the modelling and application of techniques to improve the denial of service resistance of key establishment protocols; - a proposal for enhancements to an existing modelling framework to accommodate coordinated attackers; - design of a new denial of service resistant key establishment protocol for securing signalling messages in next generation, mobile IPv6 networks; - a comprehensive survey of denial of service attacks in IEEE 802.11 wireless networks; discovery of a significant denial of service vulnerability in the clear channel assessment procedure implemented by the medium access control layer of IEEE 802.11 compliant devices; and - design of a novel, specification-based intrusion detection system for detecting denial of service attacks in IEEE 802.11 wireless networks.
339

Ontology mapping: a logic-based approach with applications in selected domains

Wong, Alfred Ka Yiu, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
In advent of the Semantic Web and recent standardization efforts, Ontology has quickly become a popular and core semantic technology. Ontology is seen as a solution provider to knowledge based systems. It facilitates tasks such as knowledge sharing, reuse and intelligent processing by computer agents. A key problem addressed by Ontology is the semantic interoperability problem. Interoperability in general is a common problem in different domain applications and semantic interoperability is the hardest and an ongoing research problem. It is required for systems to exchange knowledge and having the meaning of the knowledge accurately and automatically interpreted by the receiving systems. The innovation is to allow knowledge to be consumed and used accurately in a way that is not foreseen by the original creator. While Ontology promotes semantic interoperability across systems by unifying their knowledge bases through consensual understanding, common engineering and processing practices, it does not solve the semantic interoperability problem at the global level. As individuals are increasingly empowered with tools, ontologies will eventually be created more easily and rapidly at a near individual scale. Global semantic interoperability between heterogeneous ontologies created by small groups of individuals will then be required. Ontology mapping is a mechanism for providing semantic bridges between ontologies. While ontology mapping promotes semantic interoperability across ontologies, it is seen as the solution provider to the global semantic interoperability problem. However, there is no single ontology mapping solution that caters for all problem scenarios. Different applications would require different mapping techniques. In this thesis, we analyze the relations between ontology, semantic interoperability and ontology mapping, and promote an ontology-based semantic interoperability solution. We propose a novel ontology mapping approach namely, OntoMogic. It is based on first order logic and model theory. OntoMogic supports approximate mapping and produces structures (approximate entity correspondence) that represent alignment results between concepts. OntoMogic has been implemented as a coherent system and is applied in different application scenarios. We present case studies in the network configuration, security intrusion detection and IT governance & compliance management domain. The full process of ontology engineering to mapping has been demonstrated to promote ontology-based semantic interoperability.
340

Classificação de anomalias e redução de falsos positivos em sistemas de detecção de intrusão baseados em rede utilizando métodos de agrupamento / Anomalies classification and false positives reduction in network intrusion detection systems using clustering methods

Ferreira, Vinícius Oliveira [UNESP] 27 April 2016 (has links)
Submitted by VINÍCIUS OLIVEIRA FERREIRA null (viniciusoliveira@acmesecurity.org) on 2016-05-18T20:29:41Z No. of bitstreams: 1 Dissertação-mestrado-vinicius-oliveira-biblioteca-final.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-05-20T16:27:30Z (GMT) No. of bitstreams: 1 ferreira_vo_me_sjrp.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) / Made available in DSpace on 2016-05-20T16:27:30Z (GMT). No. of bitstreams: 1 ferreira_vo_me_sjrp.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) Previous issue date: 2016-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os Sistemas de Detecção de Intrusão baseados em rede (NIDS) são tradicionalmente divididos em dois tipos de acordo com os métodos de detecção que empregam, a saber: (i) detecção por abuso e (ii) detecção por anomalia. Aqueles que funcionam a partir da detecção de anomalias têm como principal vantagem a capacidade de detectar novos ataques, no entanto, é possível elencar algumas dificuldades com o uso desta metodologia. Na detecção por anomalia, a análise das anomalias detectadas pode se tornar dispendiosa, uma vez que estas geralmente não apresentam informações claras sobre os eventos maliciosos que representam; ainda, NIDSs que se utilizam desta metodologia sofrem com a detecção de altas taxas de falsos positivos. Neste contexto, este trabalho apresenta um modelo para a classificação automatizada das anomalias detectadas por um NIDS. O principal objetivo é a classificação das anomalias detectadas em classes conhecidas de ataques. Com essa classificação pretende-se, além da clara identificação das anomalias, a identificação dos falsos positivos detectados erroneamente pelos NIDSs. Portanto, ao abordar os principais problemas envolvendo a detecção por anomalias, espera-se equipar os analistas de segurança com melhores recursos para suas análises. / Network Intrusion Detection Systems (NIDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. The main advantage in anomaly detection is its ability to detect new attacks. However, this methodology has some downsides. In anomaly detection, the analysis of the detected anomalies is expensive, since they often have no clear information about the malicious events they represent; also, it suffers with high amounts of false positives detected. In this context, this work presents a model for automated classification of anomalies detected by an anomaly based NIDS. Our main goal is the classification of the detected anomalies in well-known classes of attacks. By these means, we intend the clear identification of anomalies as well as the identification of false positives erroneously detected by NIDSs. Therefore, by addressing the key issues surrounding anomaly based detection, our main goal is to equip security analysts with best resources for their analyses.

Page generated in 0.1446 seconds