• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Co-production of inulinase by Kluyveromyces marxianus and Saccharomyces cerevisiae in solid state fermentation

Molefe, Nnana Mantsopa 02 1900 (has links)
M. Tech. (Department of Biotechnology, Faculty of Applied and Computer Sciences), Vaal University of Technology / Solid-state fermentation (SFF) has emerged as a good method for the production of microbial enzymes such as inulinases. The use of low-cost agricultural plants and agro-industrial residues as substrates in SSF processes provides a value adding alternative to these otherwise under/or un-utilised vegetation. Production of inulinases, using various inulin-containing plant materials as carbon sources was studied using pure and mixed cultures of yeast strains. All substrates resulted in different levels of enzyme activity. A mixed culture of Kluyveromyces marxianus and Saccharomyces cerevisiae produced an extracellular exoinulinase when grown on different types of inulin-containing plant materials. Initial inulinase production was achieved as follows: 10 IU/gds (garlic cloves), 15 IU/gds (parsnips), 10 IU/gds (wheat bran) and 7 IU/gds (amadumbe) by K. marxianus and S. cerevisiae in a mixed culture. The production of inulinases by a mixed culture of K. marxianus and S. cerevisiae under SSF was further optimized by investigating initial moisture content, temperature, carbon source, nitrogen source, inoculum volume and inoculum ratio. The highest inulinase activity attained was in garlic cloves (85 IU/gds), followed by parsnips (65 IU/gds), wheat bran (37 IU/gds) and amadumbe (25 U/gds). The activities yielded 5.6 fold higher inulinase than in preliminary studies. The optimum pH and temperature of the crude enzyme were 5.0 and 50 oC, respectively. The pH and temperature stability of the enzyme was steady for 1 hour retaining about 64% activity. The average inulinase/invertase activity (I/S) ratio of 1.0 by crude inulinases was also observed after 48 hours. The crude extracellular enzyme extracts from the garlic cloves, parsnips, amadumbe and wheat bran were partially purified by ammonium sulphate precipitation and showed a specific activity of 9.03 U/mg, 0.08 U/mg, 4.12 U/mg and 0.133 U/mg respectively. The Km and Vmax values of the inulinase were 21.95 mM and 2.09 μM/min; 19.79 mM and 1.38 μM/min; 31.59 mM and 0.51 μM/min; and 25.74 mM and 0.23 μM/min, respectively. All extracts demonstrated potential for large-.scale production of inulinase and fructose syrup.
2

Estudos estruturais de glicosidases de fungos / Structural studies of fungal glycoside hydrolases

Cardona, Adriana Lucely Rojas 08 June 2005 (has links)
As glicosidases são enzimas que apresentam uma grande variedade de enovelamentos, assim como uma alta especificidade frente a diferentes substratos. Estas enzimas têm em comum a presença de dois resíduos catalíticos, responsáveis pela clivagem das ligações glicosídicas. O uso de glicosidases nas indústrias têxtil e alimentícia, no processamento de polpa de papel e na síntese de oligossacarídeos tem incentivado a engenharia destas proteínas no sentido de melhorar suas propriedades catalíticas e estabilidade. Estudos estruturais das glicosidases têm aumentado nosso entendimento de seus mecanismos de ação catalitica, assim como dos processos de interação proteína-carboidrato. Neste trabalho apresentamos os estudos cristalográficos de duas glicosidases de fungos, sendo elas a beta-galactosidase de Penicillium sp. e a Exo-inulinase de Aspergillis awamori, assim como estudos por espalhamento de raios-X a baixos ângulos (SAXS) da beta-xylosidase de Trichoderma reesei. As estruturas cristalográficas da beta-galactosidase e de seu complexo com galactose foram determinadas pela técnica de substituição isomórfa simples com espalhamento anômalo (SIRAS) até 1.9 A angstron de resolução para a estrutura sem substrato e 2.0 angstron de resolução para o complexo. A estrutura do complexo com galactose foi usada para identificar os resíduos catalíticos, sendo o resíduo Glu 200 identificado como doador de próton e o resíduo Glu 299 como o nucleófílo. As estruturas cristalográficas da Exo-inulinase de Aspergillus awamori e de seu complexo com frutose foram também determinadas pela técnica de substituição isomórfa simples com espalhamento anômalo (SIRAS) até 1.55 angstron e 1.8 angstron de resolução, respectivamente. A partir da estrutura do complexo foi possível identificar os resíduos Asp41 e Glu241 como o nucleófilo e o doador de próton, respectivamente. Além disto, foi possível verificar que o Asp189, o qual faz parte do motivo conservado Arg-Asp-Pro (RDP), é importante no reconhecimento do substrato através de duas pontes de hidrogênio. Com o intuito de obter informações estruturais sobre a P-xylosidase seu envelope foi determinado a partir dos dados do espalhamento de raios-X a baixos ângulos. O envelope da p-xylosidase em solução foi calculado a 20 A de resolução, sendo o raio de giro e a dimensão máxima 36.9 angstron e 90 angstron, respectivamente. Usando algoritmos de reconhecimento de possíveis domínios foi determinado que esta proteína apresenta, além dos dois domínios característicos da família GHF3, um barril TIM e um domínio alfa/beta, um terceiro domínio. A predição da estrutura secundária e os dados de dicroísmo circular indicam que este terceiro domínio apresentaria um enovelamento tipo beta. / Glycosidases belong to a group of enzymes displaying a great variety of protein folds and substrate specificities. Two critically located acidic residues make up the catalytic machinery of these enzymes, responsible for the cleavage of glycosidic bonds. The applications of glycosidases in textile, food, and pulp processing, as well as in catalysts and oligosaccharide synthesis have encouraged the engineering of these proteins in order to obtain improved catalytic properties and stability. Furthermore, structural studies extend our understanding of the catalytic mechanism and the role of glycosidases in the recognition processes of their different substrates. In this work, we describe crystallographic studies of two fungi glycosidases, beta-galactosidase from Penicillium sp and Exo-inulinase from Aspergillis awamori, and the small-angle x-ray scattering (SAXS) studies of another glycosidase, beta-xylosidase (from Trichoderma reesei). The crystallographic structures of j3-galactosidase its complex with galactose were solved by single isomorphous replacement with anomalous scattering (SIRAS) using the quick cryo-soaking technique, at 1.90 angstron and 2.10 angstron resolution, respectively . The X-ray structure of the enzyme-galactose complex was useful in identifying the residue Glu 200 as the proton donor and residue Glu 299 as the nucleophile involved in catalysis. The x-ray structure of exo-inulinase and its complex with fructose were also solved by SIRAS using the quick cryo-soaking technique at 1.55 angstron and 1.8 angstron resolutions, respectively. The solved structure of the enzyme-fructose complex revealed two catalytically important residues, Asp41 and Glu241, as nucleophile and proton donor, respectively. It was also possible to see that residue Asp189, which belongs to the Arg-Asp-Pro motif, provides hydrogen bonds important for substrate recognition. In order to gain structurai insights about the beta-Xylosidase from Trichoderma reesei, we calculated their SAXS envelope. The low resolution shape of this enzyme in solution was obtained fiom synchrotron x-ray scattering data at 20 angstron resolution. The radii of gyration and the maximum dimension of the beta-Xylosidase were calculated to be 36.9 angstron and 90 angstron, respectively. In contrast to the fold of the only structurally characterized member of GHF-3, the beta-D-glucan exohydrolase, which has two distinct domains, the shape of the beta-xylosidase indicates the presence of three domains located in the same plane. Domain recognition algorithms were used to show that the C-terminal part of the mino acid sequence of the protein forms the third domain. Circular dichroism spectroscopy and secondary structure prediction programs show that this additional domain adopts predominantly the B-conformation.
3

Estudos estruturais de glicosidases de fungos / Structural studies of fungal glycoside hydrolases

Adriana Lucely Rojas Cardona 08 June 2005 (has links)
As glicosidases são enzimas que apresentam uma grande variedade de enovelamentos, assim como uma alta especificidade frente a diferentes substratos. Estas enzimas têm em comum a presença de dois resíduos catalíticos, responsáveis pela clivagem das ligações glicosídicas. O uso de glicosidases nas indústrias têxtil e alimentícia, no processamento de polpa de papel e na síntese de oligossacarídeos tem incentivado a engenharia destas proteínas no sentido de melhorar suas propriedades catalíticas e estabilidade. Estudos estruturais das glicosidases têm aumentado nosso entendimento de seus mecanismos de ação catalitica, assim como dos processos de interação proteína-carboidrato. Neste trabalho apresentamos os estudos cristalográficos de duas glicosidases de fungos, sendo elas a beta-galactosidase de Penicillium sp. e a Exo-inulinase de Aspergillis awamori, assim como estudos por espalhamento de raios-X a baixos ângulos (SAXS) da beta-xylosidase de Trichoderma reesei. As estruturas cristalográficas da beta-galactosidase e de seu complexo com galactose foram determinadas pela técnica de substituição isomórfa simples com espalhamento anômalo (SIRAS) até 1.9 A angstron de resolução para a estrutura sem substrato e 2.0 angstron de resolução para o complexo. A estrutura do complexo com galactose foi usada para identificar os resíduos catalíticos, sendo o resíduo Glu 200 identificado como doador de próton e o resíduo Glu 299 como o nucleófílo. As estruturas cristalográficas da Exo-inulinase de Aspergillus awamori e de seu complexo com frutose foram também determinadas pela técnica de substituição isomórfa simples com espalhamento anômalo (SIRAS) até 1.55 angstron e 1.8 angstron de resolução, respectivamente. A partir da estrutura do complexo foi possível identificar os resíduos Asp41 e Glu241 como o nucleófilo e o doador de próton, respectivamente. Além disto, foi possível verificar que o Asp189, o qual faz parte do motivo conservado Arg-Asp-Pro (RDP), é importante no reconhecimento do substrato através de duas pontes de hidrogênio. Com o intuito de obter informações estruturais sobre a P-xylosidase seu envelope foi determinado a partir dos dados do espalhamento de raios-X a baixos ângulos. O envelope da p-xylosidase em solução foi calculado a 20 A de resolução, sendo o raio de giro e a dimensão máxima 36.9 angstron e 90 angstron, respectivamente. Usando algoritmos de reconhecimento de possíveis domínios foi determinado que esta proteína apresenta, além dos dois domínios característicos da família GHF3, um barril TIM e um domínio alfa/beta, um terceiro domínio. A predição da estrutura secundária e os dados de dicroísmo circular indicam que este terceiro domínio apresentaria um enovelamento tipo beta. / Glycosidases belong to a group of enzymes displaying a great variety of protein folds and substrate specificities. Two critically located acidic residues make up the catalytic machinery of these enzymes, responsible for the cleavage of glycosidic bonds. The applications of glycosidases in textile, food, and pulp processing, as well as in catalysts and oligosaccharide synthesis have encouraged the engineering of these proteins in order to obtain improved catalytic properties and stability. Furthermore, structural studies extend our understanding of the catalytic mechanism and the role of glycosidases in the recognition processes of their different substrates. In this work, we describe crystallographic studies of two fungi glycosidases, beta-galactosidase from Penicillium sp and Exo-inulinase from Aspergillis awamori, and the small-angle x-ray scattering (SAXS) studies of another glycosidase, beta-xylosidase (from Trichoderma reesei). The crystallographic structures of j3-galactosidase its complex with galactose were solved by single isomorphous replacement with anomalous scattering (SIRAS) using the quick cryo-soaking technique, at 1.90 angstron and 2.10 angstron resolution, respectively . The X-ray structure of the enzyme-galactose complex was useful in identifying the residue Glu 200 as the proton donor and residue Glu 299 as the nucleophile involved in catalysis. The x-ray structure of exo-inulinase and its complex with fructose were also solved by SIRAS using the quick cryo-soaking technique at 1.55 angstron and 1.8 angstron resolutions, respectively. The solved structure of the enzyme-fructose complex revealed two catalytically important residues, Asp41 and Glu241, as nucleophile and proton donor, respectively. It was also possible to see that residue Asp189, which belongs to the Arg-Asp-Pro motif, provides hydrogen bonds important for substrate recognition. In order to gain structurai insights about the beta-Xylosidase from Trichoderma reesei, we calculated their SAXS envelope. The low resolution shape of this enzyme in solution was obtained fiom synchrotron x-ray scattering data at 20 angstron resolution. The radii of gyration and the maximum dimension of the beta-Xylosidase were calculated to be 36.9 angstron and 90 angstron, respectively. In contrast to the fold of the only structurally characterized member of GHF-3, the beta-D-glucan exohydrolase, which has two distinct domains, the shape of the beta-xylosidase indicates the presence of three domains located in the same plane. Domain recognition algorithms were used to show that the C-terminal part of the mino acid sequence of the protein forms the third domain. Circular dichroism spectroscopy and secondary structure prediction programs show that this additional domain adopts predominantly the B-conformation.

Page generated in 0.0553 seconds