• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 18
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 42
  • 32
  • 27
  • 21
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Formation of Small Hydrocarbon Ions Under Inter- and Circumstellar Conditions: Experiments in Ion Traps

Savić, Igor 02 September 2004 (has links) (PDF)
Using ion-trapping techniques, selected laboratory experiments on ion-molecule reactions of astrophysical interest have been performed. For the first time a carbon beam source has been integrated into an ion trapping machine for studying collisions between ions and neutral carbon atoms and molecules. Results are presented for the interaction of D3+ ions stored in a ring-electrode trap (RET), with a beam of hot neutral carbon molecules, Cn (n = 1, 2, 3). The measured reaction rate coefficients are up to a factor two smaller than values presently used in astrophysical models. In order to complete our knowledge about the ion chemistry involving three carbon atoms, detailed investigations of reactions of C3+, C3H+ and C3H3+ with H2 and HD have been performed between 15 K and room temperature. These studies have been performed in a second apparatus, a variable-temperature 22-pole trap machine (VT-22PT). Results include reactive collisions, deuteration and radiative association. It is discussed in connection with the increase in lifetime of the C3+ + H2 collision complexes with falling temperature, what could be responsible for producing more C3H+ at 15 K. Tunneling is excluded. In C3+ + HD collisions an isotope effect has been detected, the C3D+ product ions being slightly more abundant than C3H+. Comparison of the reaction of C3H+ primary ions with HD and H2 gas revealed that the deuterated molecules are significantly more reactive. The process of radiative association of C3H+ and for the first time of C3+ with hydrogen molecules has been observed. An analysis of the data shows that radiative association becomes slower, if the neutral reactant is deuterated. Finally, the theoretical prediction from ab initio calculations that C3H3+ does not exchange an H for a D in collisions with HD, has been proven in an ion trap experiment. Careful analysis of all competing processes allows the conclusion that the rate coefficient is smaller than 4x10-16 cm3s-1 at 15 K. / Unter Verwendung von zwei Speicherapparaturen wurden ausgewählte, astrophysikalische wichtige Ionen-Molekülreaktionen untersucht. Durch die Kombination einer Kohlenstoffquelle mit einem Ionenspeicher, in dem so Reaktionen zwischen Ionen und Kohlenstoffmolekülen oder -atomen untersucht werden können, wurde Neuland betreten. Es werden Ergebnisse vorgestellt für die Reaktion von D3+ Ionen, die in einem Ringelektrodenspeicher gefangen sind, mit einem Strahl von heißen Cn (n = 1, 2, 3). Die gemessenen Ratenkoeffizienten sind nur halb so groß wie die Werte, die in astrophysikalischen Modellen verwendet werden. Um die Kenntnis über alle möglichen Reaktionen, bei denen drei C-Atome beteiligt sind, abzurunden, wurden zwischen 15 K und Zimmertemperatur die Reaktionen zwischen C3+, C3H+ und C3H3+ Ionen mit H2 und HD in vielen Details untersucht. Diese Experimente wurden in einer zweiten Apparatur durchgeführt, in der ein temperaturvariabler 22-Polspeicher das zentrale Element ist (VT-22PT). Berichtet werden Ergebnisse zu reaktiven Stößen, zur Deuterierung von Kohlenwasserstoffen und zur Strahlungsassoziation. In der Diskussion bleibt offen, was - in Verbindung mit der von 300 K zu 15 K zunehmenden Lebensdauer - der Grund dafür sein kann, daß die Bildung des exothermen Produkts C3H+ anwächst. Der Tunneleffekt scheidet aus. Bei der Reaktion C3+ + HD wurde ein Isotopeneffekt beobachtet, das C3D+ Produkt wird etwas häufiger gebildet als C3H+. Ein Vergleich der Reaktion zwischen C3H+ Ionen mit HD bzw. H2 zeigt, daß das deuterierte Molekül wesentlich reaktiver ist. Es wurden Ratenkoeffizienten für die Strahlungsassoziation von H2 Molekülen mit C3H+ und erstmals mit C3+ Ionen gemessen. Die Auswertung der Daten zeigt, dass der Prozeß langsamer abläuft, wenn der neutrale Stoßpartner deuteriert ist. Schließlich wurde experimentell die theoretische Vorhersage überprüft, dass C3H3+ keinen H-D Austausch mit HD eingeht. Eine sorgfältige Analyse aller konkurrierenden Prozesse ergab, dass bei 15 K der Raten koeffizient kleiner als 4x10-16 cm3s-1 ist.
72

Resolved sideband spectroscopy for the detection of weak optical transitions

Goeders, James E. 20 September 2013 (has links)
This thesis reports on the setup of a new ion trap apparatus designed for experiments with single ⁴⁰Ca⁺ ions to perform molecular spectroscopy. The calcium ion is laser cooled, allowing for sympathetic cooling of the nonfluorescing molecular ion. The aim of these experiments is to explore loading and identifying molecular ions in RF-Paul traps, as well as developing new spectroscopic tools to measure transitions of molecular ions via the fluorescence of co-trapped ⁴⁰Ca⁺ ions. Ground state cooling of a mixed ion pair is implemented as a first step towards increasing the sensitivity of our technique to the level necessary to measure transitions with low scattering rates (like those present in molecular ions). Doppler cooling on the S(1/2)->P(1/2) transition of the calcium ion results in the formation of a Coulomb crystal, the behavior of which may be used to infer properties of the molecular ion. Following cooling, sideband spectroscopy on the narrow S(1/2)->D(5/2) quadrupole transition of calcium may be used to identify the mass of single molecular ions. This method is verified via a non-destructive measurement on ⁴⁰CaH⁺ and ⁴⁰Ca¹⁶O⁺. The normal modes of the Coulomb crystal can also be used to extract information from the target ion to the control ion. By driving the blue side of a transition, laser induced heating can be put into the two ion system, which leads to changes in fluorescence of the ⁴⁰Ca⁺ ion, first demonstrated with two Ca⁺ isotopes. Increasing the sensitivity of this technique requires ground state cooling of both the ⁴⁰Ca⁺ ion and the ion of interest, enabling the transfer of the ion's motional state into the ground state with high probability. This thesis demonstrates ground state cooling of the atomic ion and sympathetic cooling of a second ion (⁴⁴Ca⁺). Once in the ground state, heating of the Coulomb crystal by scattering photons off of the spectroscopy ion can be measured by monitoring the resolved motional sidebands of the S(1/2)->D(5/2) transition of ⁴⁰Ca⁺, allowing for spectral lines to be inferred. Future experiments will investigate this technique with molecular ions.
73

Stabilization and control in a linear ion trap

Stacey, John-Patrick January 2003 (has links)
This thesis describes experimental work towards developing a trapped ion quantum information processor. An existing ion trap apparatus was capable of trapping and laser-cooling single ions or small ion strings of 40 Ca+, and had been used for studies of quantum jumps and natural lifetime measurements in Ca. This thesis describes improvements in this apparatus, which have allowed the stability and the flexibility of experimental control of the ions to be greatly increased. This enabled experiments to read out the spin state of a single trapped ion, and to load ions with isotope selectivity through photoionization. The optical systems were improved by installation of new lasers, optical reference cavities, and a system of acousto-optic modulators for laser intensity switching and frequency control. The photon counting for fluorescence detection was improved, and a new photon time-of-arrival correlation circuit developed. This has permitted rapid and more sensitive detection of micromotion, and hence cancellation of stray fields in the trap. A study of resonant circuits in the low RF, high voltage (10 MHz, 1 kV) regime was carried out with a view to developing a new RF supply for the Paul trap with reduced noise and increased power. A new supply based on a helical resonator was built and used to trap ions. This technique has reduced noise and will permit higher secular frequencies to be attained in the future. A magnetic field B in the ion trap is used to define a quantization axis, and in one series of experiments was required to be of order 100 G to provide a substantial Zeeman splitting. A set of magnetic field coils to control the size and direction of B is described. The design of these posed some problems owing to an unforseen issue with the vacuum chamber. In short, it is magnetizable and acts to first approximation like a magnetic shield. The field coils had to be sufficiently substantial to produce the desired field at the ion even in the presence of this shielding effect, and dark resonance (and other) spectra with Zeeman splitting were obtained to calibrate the field using the ion as a probe. Finally, the thesis describes the successful loading of the ion trap by laser photoionization from a weak atomic beam. This involved two new lasers at 423 nm and 389 nm. Saturated absorption spectroscopy of neutral calcium is first described, then transverse excitation of an atomic beam in our vacuum chamber is used to identify all the main isotopes of calcium and confirm their abundances in our source (a heated sample of natural calcium). Finally, photoionization is used to load the trap. This has three advantages over electron-impact ionization. By avoiding an electron gun, we avoid charging of insulating patches and subsequent electric field drift as they discharge; the flux in the atomic beam and hence calcium (and other) deposits on the electrodes can be greatly reduced; and most importantly, the photoionization is isotope selective. Evidence is presented which suggests that even with an non-enriched source, the rare isotope 43 Ca can be loaded with reasonable efficiency. This isotope is advantageous for quantum information experiments for several reasons, but chiefly because its ground state hyperfine structure can act as a stable qubit.
74

Characterization of Several Small Biologically Relevant Molecules by Infrared Multiple Photon Dissociation Spectroscopy and Electronic Structure Calculations

Martens, Sabrina M. January 2011 (has links)
Infrared multiple photon dissociation (IRMPD) spectroscopy has been coupled with electronic structure calculations in order to elucidate the structures of several small biological molecules including: uracil, 5-fluorouracil, 5-fluorocytosine, ferulic acid, and a number of their related analogs. IRMPD is a powerful technique, that when combined with electronic structure calculations can provide convincing evidence for the structural characterization of ions in the gas phase. Isomers of uracil and 5-fluorouracil (5-FU) have been characterized by calculations performed at the MP2(full)/aug-cc-pVTZ level of theory; however, infrared multiple photon dissociation spectroscopy experiments proved to be unsuccessful for these species. Geometry optimization and frequency calculations have isolated the dominant isomer(s) for neutral and deprotonated uracil and 5-fluorouracil, along with several cluster interactions involving water, methanol, ammonia, and methylamine. For both uracil and 5-FU, a single relevant neutral isomer was determined, with each isomer existing in the diketo, as opposed to the enol form. Following the deprotonation of this neutral isomer, both uracil and 5-FU were permitted to form anionic cluster ions with water, methanol, ammonia, or methylamine, and based on the relative Gibbs free energies (298 K) of the calculated isomers, relevant cluster interactions were determined. For each cluster, several sites of intramolecular interaction were found to exist; however, interaction at the site of deprotonation was the most favourable in every instance. Ionic hydrogen bond interactions have been found in several clusters formed by 5-fluorocytosine (5-FC). The chloride and trimethylammonium cluster ions, in addition to the cationic and anionic dimers have been characterized by infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations performed at the B2PLYP/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. IRMPD spectra in combination with calculated spectra and relative energetics have indicated, quite conclusively, that a single isomer for each 5-FC cluster that is likely being observed experimentally except in the case of the anionic dimer, in which a combination of isomers is probable. For the 5-FC-trimethylammonium cluster specifically, the calculated spectrum of the lowest energy isomer matches the experimental spectrum remarkably well. Interestingly, the cationic dimer of 5-FC was found to have a single energetically relevant isomer (Cationic-IV) in which a unique tridentate ionic hydrogen bond interaction is formed. The three sites of intramolecular ionic hydrogen bonds in this isomer interact very efficiently, leading to a significantly large calculated enthalpy of binding of 180 kJ/mol. The magnitude of the calculated binding energy for this species, in combination with the strong correlation between the simulated and IRMPD spectra, indicates that the tridentate-bound dimer is observed predominantly in experiment. Comparison of the calculated relative Gibbs free energies (298 K) for this species with several of the other isomers considered also supports the likelihood of the dominant protonated dimer existing as Cationic-IV. Protonated ferulic acid has been characterized using infrared multiple photon dissociation spectroscopy and electronic structure calculations at the B3LYP/6-311+G(d,p) level of theory. Neutral ferulic acid has been determined to undergo protonation on the carbonyl oxygen of the acid group, forming an ion of m/z 195. Due to its extensively conjugated structure, protonated ferulic acid (m/z 195) is observed to yield three stable fragment ions in IRMPD experiments. It is proposed that two parallel fragmentation pathways of protonated ferulic acid are being observed. First, proton transfer occurs from the carbonyl oxygen to the hydroxyl oxygen within the acid group, resulting in the loss of water and subsequently carbon monoxide, forming ions of m/z 177 and 149, respectively. The second proposed fragmentation pathway undergoes proton transfer from the phenolic group to the methoxy group resulting in loss of methanol and rearrangement to a five-membered ring of m/z 163. IRMPD spectra have been obtained for the ions m/z 195 and m/z 177, and anharmonic calculations have been performed on these species at the B3LYP/6-311+G(d,p) level of theory. The calculated anharmonic spectra for these ions match the experimental spectrum exceptionally well and strongly support the proposed fragmentation mechanisms.
75

Using quantum optimal control to drive intramolecular vibrational redistribution and to perform quantum computing

Santos, Ludovic 28 November 2017 (has links)
Quantum optimal control theory is applied to find optimal pulses for controlling the motion of an ion and a molecule for two different applications. Those optimal pulses enable the control of the dynamics of the system by driving the atom or the molecule from an initial state to desired states.The evolution equations obtained by means of the quantum optimal control theory are resolved iteratively using a monotonic convergent algorithm. A number of simulation parameters are varied in order to get the optimal pulses including the duration of the pulses, the time step of the time grid, a penalty factor that limits the maximal intensity of the fields, and a guess pulse which is used to start the optimal control.The optimal pulses obtained for each application are analyzed by Fourier transform, and also by looking at the time evolution of the populations that they generate in the system.The first application is the preparation of specific vibrational states of acetylene that are usually not reachable from the ground state, and that would remain unpopulated by usual spectroscopy. Relevant state energies and transition dipole moments are extracted from the experimental literature and especially from the global acetylene Hamiltonian conferring an uncommon precision to the control simulation. The control starts from the ground state. The target states belongs to the polyad Ns=1, Nr=5 of acetylene which includes two vibrational dark states and one vibrational bright state. First, the simulation is performed with the Schrödinger equation and in a second step, with the Liouville--von Neumann equation, as mixed states are prepared. Indeed, the control starts from a Boltzmann distribution of population in the rotational levels of the vibrational ground state chosen in order to simulate an experimental condition. But the distribution is truncated to limit the computational effort. One of the dark states appears to be a potential target for a realistic experimental investigation because the average population of the Rabi oscillation remains high and decoherence is expected to be weak. The optimal pulses obtained have a high fidelity, have a spectrum with well-resolved peak frequencies, and their experimental feasibility seems achievable within the current abilities of experimental laboratories.The second application is to propose an experimental realization of a microscopic physical device able to simulate quantum dynamics. The idea is to use the motional states of a Cd^+ ion trapped in an anharmonic potential to realize a quantum dynamics simulator of a single-particle Schrödinger equation. In this way, the motional states store the information and the optimal pulse manipulates this information to realize operations. In the present case, the simulated dynamics was the propagation of a wave packet in a harmonic potential. Starting from an initial quantum state, the pulse acts on the system to modify the motional states of the ion in such a way that the final superposition of motional states corresponds to the results of the dynamics. This simulation is performed with the Liouville--von Neumann equation and also with the Lindblad equation as dissipation is included to test the robustness of the pulse against perturbations of the potential. The optimal pulses that are obtained have a high fidelity which shows that the ion trap system has correctly realized the quantum dynamics simulation. The optimal pulses are valid for any initial condition if the potential of the simulation or the mass of the propagated wave packet is unchanged. / La théorie du contrôle optimal quantique est utilisée pour trouver des impulsions optimales permettant de contrôler la dynamique d'un atome et d'une molécule les menant d'un état initial à un état final. Les équations d'évolution obtenues grâce au contrôle optimal limitent l'intensité maximale de l'impulsion et sont résolues itérativement grâce à l'algorithme de Zhu--Rabitz. Le contrôle optimal est utilisé pour réaliser deux objectifs. Le premier est la préparation d'états vibrationnels de l'acétylène qui sont généralement inaccessibles par transition au départ de l'état vibrationnel fondamental. Ces états, appelés états sombres, sont les états cibles de la simulation. Ils appartiennent à la polyade Ns=1, Nr=5 de l'acétylène qui en contient deux ainsi qu'un état, dit brillant, qui lui est accessible depuis l'état fondamental. Les énergies des états du système et les moments de transitions dipolaires sont déterminés à partir d'un Hamiltonien très précis qui confère une précision inhabituelle à la simulation. Un des états sombres apparaît être un candidat potentiel pour une réalisation expérimentale car la population moyenne de cet état reste élevée après l'application de l'impulsion.Les niveaux rotationnels des états vibrationnels sont également pris en compte.Les impulsions optimales obtenues ont une fidélité élevée et leur spectre en fréquence présente des pics résolus.Le deuxième objectif est de proposer la réalisation expérimentale d'un dispositif microscopique capable de simuler une dynamique quantique. Ce travail montre qu'on peut utiliser les états de mouvement d'un ion de Cd^+ piégé dans un potentiel anharmonique pour réaliser la propagation d'un paquet d'onde dans un potentiel harmonique. Ce dispositif stocke l'information de la dynamique simulée grâce aux états de mouvements et l'impulsion optimale manipule l'information pour réaliser les propagations. En effet, démarrant d'un état quantique initial, l'impulsion agit sur le système en modifiant les états de mouvements de l'ion de telle sorte que la superposition finale des états de mouvements corresponde aux résultats de la dynamique. De la dissipation est incluse pour tester la robustesse de l'impulsion face à des perturbations du potentiel anharmonique. Les impulsions optimales obtenues ont une fidélité élevée ce qui montre que le système a correctement réalisé la simulation de dynamique quantique. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
76

A trapped single ion inside a Bose-Einstein condensate

Zipkes, Christoph January 2011 (has links)
In recent years, improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms and coherent light-matter interfaces have been built. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms and to detect variations of fundamental constants in precision atomic clocks. Now in our experiment we investigate how the two systems can be advantageously combined. We immerse a single trapped Yb+ ion in a Bose-Einstein condensate of Rb atoms. Our hybrid setup consists of a linear RF-Paul trap which is overlapped with a magnetic trap and an optical dipole trap for the neutral atoms. A first synergetic effect is the sympathetic cooling of the trapped ions to very low temperatures through collisions with the ultracold neutral gas and thus without applying laser light to the ions. We observe the dynamics of this effect by measuring the mean ion energy after having an initially hot ion immersed into the condensate for various interaction times, while at the same time monitoring the effects of the collisions on the condensate. The observed ion cooling effect calls for further research into the possibility of using such hybrid systems for the continuous cooling of quantum computers. To this end a good understanding of the fundamental interaction processes between the ion and the neutrals is essential. We investigate the energy dependent elastic scattering properties by measuring neutral atom losses and temperature increase from an ultracold thermal cloud of Rb. By comparison with a Monte-Carlo simulation we gain a deeper understanding of how the different parameters affect the collisional effects. Additionally, we observe charge exchange reactions at the single particle level and measure the energy-independent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
77

Study Of Apertures And Their Influence On Fields And Multipoles In rf Ion Traps

Chattopadhyay, Madhurima 02 1900 (has links) (PDF)
This thesis presents results of investigations on fields and multipole expansion coefficients in axially symmetric (referred to as 3D)and two dimensional (2D)ion trapmass analysers. 3D mass analysers have a three-electrode geometry with two (electrically shorted) endcap electrodes and one central ring electrode. rf-only or rf/dc potential applied across the electrodes creates a linear trapping field in the central cavity of the mass analyser.2Dmass analysers have four longitudinal electrodes in which the opposite pairs of electrodes are electrically shorted. Here, rf-only or rf/dc potential applied across the pair of electrodes creates a linear trapping field and fragment ions of the analyte gas are trapped along the central axis of the mass analyser. Both these mass analysers have apertures machined on the electrodes (holes in case of 3D traps and slits in case of 2D traps) to permit entry of electrons for ionizing the analyte gas and for collection of destabilized fragment ions. This thesis is concerned with how these apertures influence the fields and multipole expansion coefficients within the traps. This thesis is divided into five chapters. Chapter 1 provides the background information which is required for the thesis. It begins with a description of the geometry of the 3D and the 2D mass analysers used in the present work.These include the quadrupole ion trap (QIT) and cylindrical ion trap (CIT) for 3D structures and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for 2D structures. This is followed by a brief description of the numerical method, the boundary element method (BEM), used in the thesis. Also presented here are the Green’s function for 3D and 2D geometries. In the final section, the scope of the thesis is presented. Chapter 2 presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E= EnoAperture + EdueToAperture where EnoAperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing; and where EdueToAperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis of the trap can in this way be well approximated for any aperture that is not too large. To derive EdueToAperture, classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes. EnoAperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact (though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the quadrupole ion trap (QIT), the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT)and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics studies than have been hitherto attempted. In Chapter 3we complement and complete the work presented in Chapter 2 by considering off-axis fields in the axially symmetric (3D) and the two dimensional (2D) ion traps whose electrodes have apertures. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with no apertures. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture. In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap specific approximation. The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30% and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures. Chapter 4 presents approximate analytical expressions for estimating the variation in multipole expansion coefficients with the size of apertures in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers. Following the approach adopted in Chapter 2 and Chapter 3 which focused on the role of apertures to fields within traps, here too, the analytical expression is a sum of two terms, An,noAperture, the multipole expansion coefficient for a trap with no apertures and An,dueToAperture, the multipole expansion coefficient contributed by the aperture. An,noAperture has been obtained numerically and An,dueToAperture is obtained from the nth derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A2 to A24, estimated by our analytical expressions were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap size. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be in the range of 10% to 15%. The leading multipole expansion coefficient, A2, however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and LIT only at larger aperture sizes. Chapter 5 presents a few concluding remarks.
78

Glow discharge electron impact ionisation and improvements of linear ion trap operating mode for in-the-field detection of illegal substances

Chalkha, Achouak 17 February 2015 (has links)
. / .
79

Formation of Small Hydrocarbon Ions Under Inter- and Circumstellar Conditions: Experiments in Ion Traps

Savić, Igor 26 August 2004 (has links)
Using ion-trapping techniques, selected laboratory experiments on ion-molecule reactions of astrophysical interest have been performed. For the first time a carbon beam source has been integrated into an ion trapping machine for studying collisions between ions and neutral carbon atoms and molecules. Results are presented for the interaction of D3+ ions stored in a ring-electrode trap (RET), with a beam of hot neutral carbon molecules, Cn (n = 1, 2, 3). The measured reaction rate coefficients are up to a factor two smaller than values presently used in astrophysical models. In order to complete our knowledge about the ion chemistry involving three carbon atoms, detailed investigations of reactions of C3+, C3H+ and C3H3+ with H2 and HD have been performed between 15 K and room temperature. These studies have been performed in a second apparatus, a variable-temperature 22-pole trap machine (VT-22PT). Results include reactive collisions, deuteration and radiative association. It is discussed in connection with the increase in lifetime of the C3+ + H2 collision complexes with falling temperature, what could be responsible for producing more C3H+ at 15 K. Tunneling is excluded. In C3+ + HD collisions an isotope effect has been detected, the C3D+ product ions being slightly more abundant than C3H+. Comparison of the reaction of C3H+ primary ions with HD and H2 gas revealed that the deuterated molecules are significantly more reactive. The process of radiative association of C3H+ and for the first time of C3+ with hydrogen molecules has been observed. An analysis of the data shows that radiative association becomes slower, if the neutral reactant is deuterated. Finally, the theoretical prediction from ab initio calculations that C3H3+ does not exchange an H for a D in collisions with HD, has been proven in an ion trap experiment. Careful analysis of all competing processes allows the conclusion that the rate coefficient is smaller than 4x10-16 cm3s-1 at 15 K. / Unter Verwendung von zwei Speicherapparaturen wurden ausgewählte, astrophysikalische wichtige Ionen-Molekülreaktionen untersucht. Durch die Kombination einer Kohlenstoffquelle mit einem Ionenspeicher, in dem so Reaktionen zwischen Ionen und Kohlenstoffmolekülen oder -atomen untersucht werden können, wurde Neuland betreten. Es werden Ergebnisse vorgestellt für die Reaktion von D3+ Ionen, die in einem Ringelektrodenspeicher gefangen sind, mit einem Strahl von heißen Cn (n = 1, 2, 3). Die gemessenen Ratenkoeffizienten sind nur halb so groß wie die Werte, die in astrophysikalischen Modellen verwendet werden. Um die Kenntnis über alle möglichen Reaktionen, bei denen drei C-Atome beteiligt sind, abzurunden, wurden zwischen 15 K und Zimmertemperatur die Reaktionen zwischen C3+, C3H+ und C3H3+ Ionen mit H2 und HD in vielen Details untersucht. Diese Experimente wurden in einer zweiten Apparatur durchgeführt, in der ein temperaturvariabler 22-Polspeicher das zentrale Element ist (VT-22PT). Berichtet werden Ergebnisse zu reaktiven Stößen, zur Deuterierung von Kohlenwasserstoffen und zur Strahlungsassoziation. In der Diskussion bleibt offen, was - in Verbindung mit der von 300 K zu 15 K zunehmenden Lebensdauer - der Grund dafür sein kann, daß die Bildung des exothermen Produkts C3H+ anwächst. Der Tunneleffekt scheidet aus. Bei der Reaktion C3+ + HD wurde ein Isotopeneffekt beobachtet, das C3D+ Produkt wird etwas häufiger gebildet als C3H+. Ein Vergleich der Reaktion zwischen C3H+ Ionen mit HD bzw. H2 zeigt, daß das deuterierte Molekül wesentlich reaktiver ist. Es wurden Ratenkoeffizienten für die Strahlungsassoziation von H2 Molekülen mit C3H+ und erstmals mit C3+ Ionen gemessen. Die Auswertung der Daten zeigt, dass der Prozeß langsamer abläuft, wenn der neutrale Stoßpartner deuteriert ist. Schließlich wurde experimentell die theoretische Vorhersage überprüft, dass C3H3+ keinen H-D Austausch mit HD eingeht. Eine sorgfältige Analyse aller konkurrierenden Prozesse ergab, dass bei 15 K der Raten koeffizient kleiner als 4x10-16 cm3s-1 ist.
80

Reakce iontů s molekulami H2 a rekombinace iontů H+3 s elektrony při kryogenních teplotách / Reactions of Hydrogen Molecules with Ions and Recombination of H+3 Ions with Electrons at Cryogenic Temperatures

Hejduk, Michal January 2013 (has links)
We studied how distribution of nuclear-spin states of H+ 3 ions or H2 molecules influence rate coefficients of H+ 3 -electron recombination or reactions of H2 with N+ or H+ , with regard to kinetic and internal temperatures of the reactants. Experiments were carried out in plasma environment or in an ensemble of ions in an ion trap. Main diagnostic methods were the Langmuir probe diagnos- tics, laser absorption- and mass spectroscopy. The distribution of nuclear spin states (para and ortho) was varied using a specially constructed para-hydrogen generator. We performed pioneer measurements of the rate coefficients for the nuclear-spin-state-selective binary and ternary H+ 3 -electron recombination in thermalised plasma. We performed studies of N+ + para/ortho-H2 reaction with high accuracy and interpreted the results as dependent on fine structure states of N+ ions. We measured a temperature dependence of the rate coeffi- cients for radiative and ternary channels of H+ + para/ortho-H2 association. 1

Page generated in 0.0691 seconds