• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The mechanism of waterborne lead uptake and toxicity in <i>Daphnia magna</i>

Roy, Sayanty 05 June 2009
Lead is an omnipresent pollutant, and its contamination in natural waters is an issue of current regulatory concern throughout the world including Canada. The free divalent ion of lead (Pb2+) is considered to be the most bioavailable and toxic form of lead. Pb2+ is known to be a calcium antagonist in vertebrates including fish. It is believed that lead causes toxicity to freshwater fish primarily by disrupting ionic homeostasis both during acute and chronic waterborne exposure. Lead can also potentially act as a respiratory toxicant since it is known to impair hemoglobin synthesis in both vertebrates. To date, the mechanistic underpinnings of lead accumulation and toxicity in aquatic invertebrates are not well understood, particularly during acute exposure. Therefore, the main objectives of the present study were in two folds: (i) to investigate the mechanisms of waterborne lead uptake, and (ii) to understand the physiological basis of lead toxicity during acute exposure. I used freshwater crustacean, <i>Daphnia magna</i>, as a model freshwater invertebrate species for my study. <i>Daphnia</i> are known to be quite sensitive to metals and widely used as a model species for toxicity assessments. The results of my study suggest that lead inhibits waterborne Ca2+ uptake in <i>Daphnia</i> in a concentration dependent manner, and this inhibition occurs predominantly through a direct competitive interaction. The entry of waterborne Pb2+ in <i>Daphnia</i> likely occurs via both lanthanum-sensitive and verapamil-sensitive epithelial calcium channels. Moreover, my results also indicate that acute waterborne lead exposure severely disrupts both Ca2+ and Na+ uptake from water, which are concomitant with the increase in the lead body burden in <i>Daphnia</i>. Interestingly however, acute exposure to lead does not affect the rate of oxygen consumption in <i>Daphnia</i>, indicating no acute respiratory toxicity of lead. Overall, it appears that lead acts as an ionoregulatory toxicant to <i>Daphnia</i> during acute waterborne exposure.
2

The mechanism of waterborne lead uptake and toxicity in <i>Daphnia magna</i>

Roy, Sayanty 05 June 2009 (has links)
Lead is an omnipresent pollutant, and its contamination in natural waters is an issue of current regulatory concern throughout the world including Canada. The free divalent ion of lead (Pb2+) is considered to be the most bioavailable and toxic form of lead. Pb2+ is known to be a calcium antagonist in vertebrates including fish. It is believed that lead causes toxicity to freshwater fish primarily by disrupting ionic homeostasis both during acute and chronic waterborne exposure. Lead can also potentially act as a respiratory toxicant since it is known to impair hemoglobin synthesis in both vertebrates. To date, the mechanistic underpinnings of lead accumulation and toxicity in aquatic invertebrates are not well understood, particularly during acute exposure. Therefore, the main objectives of the present study were in two folds: (i) to investigate the mechanisms of waterborne lead uptake, and (ii) to understand the physiological basis of lead toxicity during acute exposure. I used freshwater crustacean, <i>Daphnia magna</i>, as a model freshwater invertebrate species for my study. <i>Daphnia</i> are known to be quite sensitive to metals and widely used as a model species for toxicity assessments. The results of my study suggest that lead inhibits waterborne Ca2+ uptake in <i>Daphnia</i> in a concentration dependent manner, and this inhibition occurs predominantly through a direct competitive interaction. The entry of waterborne Pb2+ in <i>Daphnia</i> likely occurs via both lanthanum-sensitive and verapamil-sensitive epithelial calcium channels. Moreover, my results also indicate that acute waterborne lead exposure severely disrupts both Ca2+ and Na+ uptake from water, which are concomitant with the increase in the lead body burden in <i>Daphnia</i>. Interestingly however, acute exposure to lead does not affect the rate of oxygen consumption in <i>Daphnia</i>, indicating no acute respiratory toxicity of lead. Overall, it appears that lead acts as an ionoregulatory toxicant to <i>Daphnia</i> during acute waterborne exposure.
3

Sex and stress steroid modulation of GABA mediated chloride ion flux in rat CNS

Strömberg, Jessica January 2007 (has links)
Background: Sex and stress steroids are metabolized to 3a-hydroxy-pregnane-steroid metabolites such as allopregnanolone (Allo) and tetrahydrodeoxycorticosterone (THDOC). Allo and THDOC are neuroactive steroids that are metabolized in the brain and act in brain as potent positive GABAA receptor function modulators. Allo as well as THDOC levels increase during stress. Allo has been associated with a number of symptoms and malfunctions such as impaired memory function and negative mood symptoms in a subgroup of individuals both for animals and humans. Pregnane steroids with 3b-hydroxy-configuration (3b-steroids) have been shown to reduce the Allo enhanced GABA effect. Aims: The aims for the present thesis were to investigate the effect of 3b-steroids on the GABA mediated GABAA receptor function in presence of positive GABAA receptor modulators. Further, the regional variances between the 3b-steroids as well as the mechanism of the effect were studied. Finally, the effect of stress steroid metabolites on the GABAA receptor function was investigated. Results: 3b-OH-5a-pregnane-20-one reduced the Allo enhanced GABA mediated chloride ion uptake into cortical microsacs. The 3b-isomer reduced the efficacy of Allo without shift the concentration response curve. It is therefore suggested that the 3b-isomer has a non-competitive effect. Further, it was shown that the 3b-isomer reduced the Allo effect in a selective way since the 3b-isomer did not interact with other positive modulators or with GABA itself. Five tested 3b-steroids reduced the Allo enhanced GABA mediated chloride ion uptake in cerebral cortex and hippocampus as well as the Allo prolongation on spontaneous inhibitory postsynaptic currents (sIPSCs) in preoptic nucleus. In cerebellum on the other hand the 3b-steroids showed to have weaker or no effect compared to the other tested regions. Interestingly, in absence of Allo, two of the 3b-steroids positively modulated the GABA stimulated GABAA receptor function. In absence of Allo, 5b-pregnane-3b,20(R)-diol increased the desensitization rate of current response. In contrast to the reducing effect on the Allo induced prolongation on sIPSCs, the effect of the 3b-steroid on GABA application, was not altered in presence of Allo. The mechanism of the 3b-steroid is therefore suggested being desensitization dependent in contrast to Allo, which has been suggested to decrease the GABA unbinding rate. In contrast to the enhanced effect of Allo, glucocorticoid metabolites reduced the GABA mediated chloride ion uptake in a concentration dependent way. The results in present thesis indicate that both sex and stress steroid metabolites interact with the GABAA receptor function. The knowledge that diversity of endogenous steroids interact with the GABAA receptor function is of importance for further understanding of different sex and stress steroid related symptoms and syndromes.
4

Ammonia Removal from Mining Wastewater by Ion-Exchange Regenerated by Chlorine Solutions

Zhang, Tianguang 17 January 2022 (has links)
The mining industry is a significant contributor to the Canadian economy. However, the mining activities can be detrimental to the environment due to the release of pollutants. Ammonia is one of the noxious and toxic contaminants associated with mining, ammonia contamination is created by the oxidizing agent in explosives. The explosives impacted mining wastewater (EIMWW) usually contains ammonia and other metal ions. The ammonia in EIMWW could harm the aquatic environment by the depletion of oxygen and its lethal toxicity to aquatic organisms. Before release to environment, EIMWW needs to be treated with an easy-to-operate method for ammonia removal at the remote mining sites. Ion-exchange (IE) with zeolite is an effective method for ammonia removal that is easy-to-operate, is not significantly impacted by cold temperature or toxicity effects. However, the traditional IE regeneration approach of using high concentration NaCl solutions creates a secondary polluting stream. Chlorine regeneration of ammonia-loaded zeolite appears to be a promising option, an evaluation of this option is the main topic of this thesis. This thesis includes three initiatives. The first is a set of multi-cycle batch loading-regeneration tests to assess the viability of ammonia removal with a commercial zeolite (SIR-600) for the treatment of a synthetic EIMWW (containing total ammonia nitrogen (TAN), K, and Ca) and to examine the performance of different ion-exchange regeneration solutions. The long-term TAN uptake of SIR-600 regenerated using a NaOCl (100 mg free Cl2/L) solution was 0.24 meq/g, which was approximately 20% lower than that after a NaCl regeneration. However, chlorine regeneration is promising because the selectivity of SIR-600 for TAN over Ca and K increased after the chlorine regeneration. To simulate recycling of the NaOCl regenerants, K and Ca were added to the NaOCl solution, it did not substantially affect the subsequent SIR-600’s ion uptake. This initiative represents a significant contribution since the earlier studies into chlorine regeneration did not investigate the impact of competing ions. The second initiative addressed concerns regarding the long-term integrity of SIR-600 arising from its exposure to high chlorine concentrations during the regeneration. The five-week long chlorine batch exposure tests with solutions of up to 1000 mg free Cl2/L showed that chlorine exposure did not significantly affect the SIR-600’s characteristics in terms of particle size distribution, surface area, FTIR spectra and ion uptake. Thus, SIR-600 has the potential for long-term use in field applications. The final initiative evaluated the feasibility of chlorine regeneration for continuous flow IE column systems used for ammonia removal from a synthetic EIMWW. Continuous flow column systems are important because these are the standard IE units used in full-scale applications. Multi-cycle column loading-regeneration tests were performed to compare the zeolite performance using a NaOCl (1000 ppm as free Cl2) solution with that using a 5% NaCl regeneration. The influence of loading duration was also assessed. The use of 6-hr loading cycles were shown to be preferable to 23-hr loading cycles because it had lower effluent concentrations and they could achieve higher overall TAN mass removals per unit time. After three operational cycles, the SIR-600 had similar TAN uptake performances (0.21 meq/g Vs. 0.21 meq/g) after NaOCl regeneration and after salt (NaCl) regeneration. This is in contrast to the lower TAN uptakes for the NaOCl regeneration in the batch tests, this indicates that batch tests are not always representative of full-scale applications. Compared to NaCl regenerated SIR-600, SIR-600 after NaOCl regeneration had a higher preference for TAN over Ca and K, which makes this type of regeneration very promising. Its only apparent limitation is that the NaOCl regeneration required a longer duration. During the NaOCl regeneration, the main mechanism appears to be the oxidation of ammonia to nitrogen gas and hydrogen ions, however the Na in the NaOCl solution also seems to have a role in the regeneration.

Page generated in 0.1758 seconds