Spelling suggestions: "subject:"ion nanoparticles""
11 |
Potencijal primene stabilisanog i „zelenom“ sintezom produkovanog nano gvožđa (0) za remedijaciju sedimenta kontaminiranog metalima / Potential application of stabilized and "green" produced nano zero -valent iron for remediation of sediment contaminated with metalsSlijepčević Nataša 02 October 2020 (has links)
<p>Ekološki problem svetskih razmera predstavlja zagađenost sedimenta teškim metalima, usled negativnih ekoloških efekata metala na životnu sredinu. Mnoge zemlje i regioni, kao i naša zemlja suočavaju se sa ovom problematikom, koja je vrlo rasprostranjena usled sve brže urbanizacije i industrijalizacije, a sa sve većom nebrigom usled ispuštanja otpadnih voda bez prethodnog prečišćavanja u vodotokove. Prilikom promene uslova vodenog ekosistema, može doći do izluživanja metala i štetnih efekata na životnu sredinu kao i na zdravlje ljudi. Stoga je remedijacija sedimenata zagađenih metalima ključna aktivnost u okviru procesa potpune sanacije vodenog ekosistema, a ekonomične, efikasne i ekološki prihvatljive tehnike remedijacije su hitno potrebne i rado primenljive u tretmanu na velikoj skali. Pre primene remedijacione tehnike na velikoj skali, neophodna su ispitivanja pri laboratorijskim uslovima i pilot skali. Na kraju svakog uspešnog laboratorijskog ispitivanja nalaze se pilot istraživanja. Pomoću njih se dobija p ravi odgovor u smislu izbora optimalne tehnologije imajući u vidu investicione i operativne troškove,<br />postignuti rezultat i krajnje ciljeve u pogledu upravljanja postrojenjem i otpadom. U ovom radu ispitan je potencijal primene stabilisanog i zelenom sinte zom produkovanog nano Fe(0) zaremedijaciju sedimenta zagađenog teškim metalima. Kao remedijaciona tehnika odabrana je stabilizacija/solidifikacija, koja podrazumeva dodavanje agenasa za imobilizaciju metala u sedimentu sprečavajući time potencijalni rizik od izluživanja metala u životnu sredinu. Konvencionalni materijali poput letećeg pepela, cementa, gline se već odavno koriste u ovu svrhu. Kako u današnje vreme raste potražnja za novim, lako dostupnim agensima za stabilizaciju<br />sedimenta, došlo se na ideju o primeni nanomaterijala na bazi gvožđa, tj. nano Fe(0) stabilisanog nativnom glinom i produkovanog redukcijom pomoću organskih molekula prirodno prisutnih u ekstraktu lišća hrasta i crnog duda. Nanomaterijali su sintetisani i karakterisani različitim metodama i tehnikama. U nastavaku, u cilju efikasnosti njihove primene za stabilizaciju sedimenta, sprovedeni su ekstrakcioni i dinamički laboratorijski testovi izluživanja. Odabrane su smeše sedimenta i nanomaterijala koje su pokazale najbolju efikasnost tr etmana. Nakon toga se ispitivanje nastavilo na pilot skali, gde se pratilo ponašanje nanomaterijala u zavisnosti od konvencionalnih materijala koji su već u literaturi dokumentovani kao efikasni imobilizacioni agensi. Dodatna potvrda uspešnosti tretmana data je analizom i karakterizacijom s/s smeša nakon pilot ispitivanja Na osnovu dobijenih rezultata proces se uspešno pokazao pri laboratorijskim uslovima, a takođe i prilikom pilot tretmana, odnosno nakon pilot tretmana nije došlo do povećanih koncentracija izluživanja metala iz s/s smeša, kao ni degradacije smeša nakon procesa ovlaživanja tokom šest meseci. Na osnovu toga, ovako tertirani sediment se može bezbedno odlagati na deponije, ili pak iskoristiti za „kontrolisanu“ upotrebu, izgradnju puteva,kamenoloma, pomoćnih objekata i slično. Rezultati su doprineli u cilju trajnijeg rešavanja pitanja odlaganja zagađenog (izmuljenog) rečnog sedimenta, pri čemu se u procesu stabilizacije/solidifikacije dobijaju proizvodi sa dodatom vrednošću neumanjenog kvaliteta .Nanomaterijali sintetisani u ovom radu na bazi ekstrakta lišća biljaka doprinose kako očuvanju životne sredine, tako i ekonomičnosti primene remedijacione tehnike. Zahvaljujući velikoj specifičnoj površini, malim dimenzijama čestica i velikom kapacitetu za imobilizaciju teških<br />metala predstavljaju efikasnu alternativu komercijalno dostupnim materijalima, što ih čini veoma atraktivnim i obećavajućim u budućnosti pri tretmanu rečnog sedimenta zagađenog teškim metalima.</p> / <p>The pollution of sediment by heavy metals represents a large environmental problem all<br />over the world. A lot of countries in the region as well as our country deal with this problem, which is widespread because of the fast urbanization and industrialization. There is more and more carelessness about wastewater discharge into water flows without previous purification. When the conditions of the aquatic ecosystem change, metal leaching and harmful effects on the environment and human health can occur. Therefore, remediation of metal-contaminated sediments is crucial activity in the process of the complete ecosystem remediation. Cost effective, efficient and environmentally friendly remediation techniques are urgently needed and readily applicable in large-scale treatment. Before applying remediation techniques on the largescale, both laboratory and pilot tests are necessary. There are pilot studies at the end of each successful laboratory test. Those studies provide the right answer in terms of choosing the optimal technology, taking into account the investment and operating costs, the achieved resultand the ultimate goals in terms of plant and waste management. In this study, the application<br />potential of stabilized and green - synthesized nano Fe(0) for the remediation of heavy metal -contaminated sediment was investigated. Stabilization / solidification technique was chosen as remediation technique which involves the addition of metal immobilizing agents in the sediment thus preventing the potential risk of metal leaching into the environment. Conventional materials such as fly ash, cement and clay have long been used for this purpose. Nowadays there is need for new, easily accessible agents for the sediment stabilization. Therefore it came up with the idea of using iron-based nanomaterials, ie. nano Fe(0) stabilized by native cla y and produced by reduction using organic molecules naturally present in oak and black mulberry leaf extract. Nanomaterials have been synthesized and characterized by different methods and techniques. In order to be effective in their application for sediment stabilization, extraction and dynamic laboratory leaching tests were performed. Mixtures of sediment and nanomaterials were selected that showed the best treatment efficiency. After that, the examination was continued on a pilot scale, where the behavior of nanomaterials was monitored, depending on conventional materials which have already been documented in the literature as effective immobilizing agents.Additional confirmation of treatment success was given by analysis and characterization of s / s mixtures after pilot testing. According to obtained results, the process was successfully demonstrated under laboratory conditions, and also during the pilot treatment. After the pilot treatment there were no increased concentrations of metal leaching from s/s mixtures, nor mixture degradation after the wetting process for six months. Based on that, the sediment treated in this way can be safely disposed of in landfills, or used for "controlled" use, construction of<br />roads, quarries, auxiliary facilities and etc. The results have contributed to the goal of a more permanent solution to the issue of disposal of polluted (slugged) river sediment, whereby in the process of stabilization/solidification, products with added value of undiminished quality are obtained. The nanomaterials synthesized in this paper on the basis of plant leaf extract contribute to both the preservation of the environment and the economy of remediation techniques. Thanks to their large specific surface area, small particle size and large ca pacity for immobilization of heavy metals, they represent an effective alternative to commercially available materials. It makes them very attractive and promising in the future in the treatment of river sediment contaminated with heavy metals.</p>
|
12 |
THE ELECTRO-MAGNETIC PROPERTIES OF COMBINED CARBON NANOTUBES AND CARBON-COATED IRON NANOPARTICLES-MODIFIED POLYMER COMPOSITESJassimran Kaur Arora (16619358) 20 July 2023 (has links)
<p>Polymer based multifunctional material systems (MFMS) have gained increasing attention in the past two decades. The addition of nanofillers and nanoparticles allows for modification of physical properties as well as the discovery of new features. Multifunctionalization of composites allows us to “do more with less”. For example, electrically conductive additives can eliminate the need for sensors through self-sensing principles, shape morphing matrices can reduce the need for actuators, and the inclusion of fire-resistant constituents can reduce flammability in stringent fire protection measures. With added capabilities, the applications of multifunctional composites extends beyond the aerospace and automotive industries to healthcare, infrastructure, electronics, among others, and optics.</p>
<p><br></p>
<p>The current state of the art is largely focused on single-filler composites or multifiller composites with complementary attributes. For example, carbon nanotubes (CNTs) when mixed with graphene produces higher conductivity than can be achieved via modification with either CNTs or graphene alone. The majority of investigations conducted in this domain have fillers selected with the aim of imparting a singular property. Much less has been done in the area of multifiller and multifunctional polymer matrix composites (PMCs) which can exhibit multiple properties. Consequently, this work seeks to contribute towards the field of synergistic functional composites. That is, a multifiller composite material system comprised of differently functional fillers. This approach has potential to yield smart material systems that outperform single-filler or single-functionality materials through the discovery of novel synergistic coupling between the differently functional phases.</p>
<p><br></p>
<p>In light of the preceding motivation, this work presents the results on the experimental electromagnetic and mechanical characterization of multi-walled carbon nanotubes (MWCNTs) + carbon-coated iron nanoparticle (CCFeNP)-modified polymers. Carbon nanotubes with their electrical properties and iron nanoparticles with their magnetic attributes present potential for synergistic electromagnetic interactions in a well-percolated network. We report on the electro-magnetic properties of MWCNT + CCFeNP/epoxy composites including DC and AC conductivity, dielectric permittivity, magnetic permeability, and piezoresistance as a function of varying relative MWCNT and CCFeNP concentrations. The results are in a large part linked to the manufacturing process described herein. This work seeks to establish the foundations of synergistic functional filler combinations that could lead to new multifunctional capabilities in the future.</p>
|
13 |
Mossbauer, Magnetization And Electrical Transport Studies On Iron Nanoparticles Embedded In The Carbon MatrixSajitha, E P 03 1900 (has links)
This thesis deals with the studies of magnetization and electrical transport properties of iron nanoparticles embedded in the carbon matrix. The synthesis and characteristics of the nanoparticle systems studied, are also presented.
Carbon-iron (C-Fe) based systems are of growing interest due to their improved magnetic properties as well as in their potential application as sensors, catalysts, and in various other applications. In particular, nanocomposites of iron carbide, such as the cementite phase Fe3C, are further suited to diverse technological exploitations due to their enhanced mechanical properties and importance in ferrous metallurgy. The recent interest in magnetic nanostructures lies in the emergence of novel magnetic and transport properties with the reduction of size. As the dimension approaches the nanometer length scale, interesting size-dependent properties like enhanced coercivity, enhanced magnetic moment, super paramagnetism etc. are seen. Thermal assisted chemical vapour deposition (CVD) is used to decompose and chemically react the introduced precursors, maleic anhydride and ferrocene. This method provides relative size control over the individual particles by varying C/Fe concentration in precursors and the pyrolysis temperature during the co-deposition process. Ferrocene has been used actively for the production of nanoparticle composites and in the production of nanostructured carbon. The temperature of preparation, reaction rate, and the time duration of annealing directly effects the nanoparticle compositions. The catalytic effect of transitional elements are well documented in literature. This thesis is an effort to understand the growth of ferromagnetic nanocrystallites in carbon matrix, which undergo partial graphitization due to the catalytic effect of transitional elements. The effect of transitional metal on the degree of graphitization of the carbon matrix, morphology of the nanoparticle and the carbon matrix are studied. The phase of the ferromagnetic iron nanoparticles and the structural investigation forms part of the study. Here X-Ray diffraction (XRD) is employed to study the presence of different phases of iron in the partially graphitized carbon matrix. The matrix morphology and the particle size distribution were studied using Transmission Electron Microscopy (TEM) and High-Resolution TEM (HRTEM). The ferromagnetic states of the iron nanoparticles are investigated using Mossbauer spectroscopy. The results from these studies, are used to correlated the macroscopic properties to the microscopic studies. The enhanced magnetization, coercivity and the temperature dependence of the magnetization value is understood within the frame work of ferromagnetic Bloch law and surrounding carbon spins. The logarithmic temperature dependence of conductivity of the nanoparticle composites is analyzed in the framework of interference models as well as the many-body Kondo interaction effect.
This thesis contains seven chapters:
In chapter 1, a brief introduction to mesoscopic physics and the size-dependent phenomenon are given. Special attention is paid to magnetic nanoparticle and its composites, and the various finite-size effects exhibited by them are discussed in detail. The relevance of carbon matrix and its importance on the growth of iron nanoparticles with high thermal stability is also discussed. The ballistic and diffusive transport phenomena observed in low-dimensional systems are briefly discussed. The interplay of localization and various interaction effects at nanoscale are examined. In disordered metals the low temperature conductivity is dominated by the interference effects. A brief discussion is made on the conductivity in disorder systems, with the presence of magnetic impurities and how the classic many-body Kondo problem, is effected by various interactions.
Chapter 2, mainly deals with the experimental techniques employed in the thesis. The thermal-assisted chemical vapour deposition setup used to decompose and chemically react the introduced organometallic precursors, for the preparation of C:Fe composites are discussed and its advantage over other preparation methods are emphasized. The method is optimized to provide relative size control over the nanoparticles composites and the phase compositions by varying C/Fe concentration in precursors and the pyrolysis temperature, during the co-deposition process. The various structural characterization tools used in the present study are summed up concisely in this chapter. The SQUID magnetometer system; its working principle and the various protocol used for the low temperature magnetization measurements are elaborated. Further, details regarding superconducting magnetic cryostat, utilized for the low temperature conductivity and magneto resistance measurements, are discussed. Films of C:Fe composites are grown on substrates to study the effect of disorder and sample size on the conductivity behaviour of the composites at low temperature.
Chapter 3, presents the outcome of the structural studies undertaken on the C:Fe composites using XRD, TEM, and HRTEM. X-ray diffraction measurements performed on the powder composites reveal that, in addition to the presence of sharp diffraction peak from nanographite, peaks corresponding to the different phases of Fe are also seen. The effect of preparation temperature on the matrix morphology is revealed from the estimation of degree of graphitization. Iron carbide is the predominant phase in all the prepared composites. For low concentration of iron, iron carbide alone is present but as the percentage of iron in the samples increased other phases of iron are also seen. The microscopic studies on the prepared compositions revealed the presence of nanosized iron particles well embedded in the partially graphitized matrix. Here again, with the increase in iron percentage, agglomeration of ferromagnetic nanoparticles are seen. The kinetics of the particle growth and the filamentous nature of the carbon matrix are also discussed.
Mossbauer investigation on C:Fe composites are presented in chapter 4. The measurements revealed the iron atom occupation in the crystal lattice. In the lower Fe concentration samples, the room temperature Mossbauer spectrum revealed the presence of sextet from Fe3C (cementite) phase. As the percentage of iron increased, sextet from α-Fe, Fe3O4 are also seen in some of the prepared compositions. Effect of carbon atoms on the structure and magnetic properties of the nanoparticle species are obvious from the isomer shift measurements.
Chapter 5 comprises of the various magnetic properties and interactions present in small particle system such as magnetic anisotropy, coercivity, enhanced magnetization, inter-and intra-particle interactions etc. Magnetization measurements carried out in SQUID magnetometer on the C:Fe composites and carbon flakes (prepared from organic precursor, maleic anhydride alone) are presented. The enhanced magnetic properties of the nanoparticle assembly is discussed in detail. The hysteresis loops trace, with a finite coercivity at room temperature, indicates the ferromagnetic nature of the samples. At room temperature the magnetization value saturates at high magnetic field, indicating negligible effect from super paramagnetic particles on the hysteresis loop. The squareness ratio, saturation magnetization, coercivity and remanence magnetization values are analyzed in detail. The temperature dependence of magnetization shows a combination of Bloch law and Curie-Weiss behaviour, consistent with the picture of ferromagnetic clusters embedded in a carbon matrix. The Bloch’s constant is found to be larger by an order of magnitude compared to the bulk value, implying stronger dependence of magnetization with temperature. Effort to understand the enhanced magnetic moment in the light of magnetism in carbon was taken up. The proximity effect of ferromagnetic metal on the carbon and the hydrogen bonding with the dangling bonds, both studied in detail in literature, in connection with the induced magnetic moments in carbon, are invoked.
In chapter 6, the different conductivity regimes are identified, to study the conduction mechanisms in composites and films. For the transport measurements pelletized samples are used for the resistivity and magneto resistance measurements. The conductivity data are analyzed based on the interplay of localization and Kondo effect in the ferromagnetic disordered system. In order to understand the effect of disorder and thickness on the Kondo problem, transport measurements are carried on thin films of C:Fe composites grown on quartz and alumina substrate. Disorder induced metal-insulator transition is observed in the prepared samples. The zero-field conductivity and magneto resistance data is fitted to variable range hopping (VRH) in strong localization regime.
Chapter 7 summarizes the thesis and presents some perspectives for the future.
|
14 |
Factors influencing the uptake and fate of metallic nanoparticles in filter-feeding bivalvesHull, Matthew S. 22 September 2011 (has links)
Metallic nanoparticles (MetNPs) with unique nanoscale properties, including novel optical behavior and superparamagnetism, are continually being developed for biomedical and industrial applications. In certain biomedical applications where extended blood half-lives are required, MetNPs are surface-functionalized using polymers, proteins, and other stabilizing agents to facilitate their resistance to salt-induced aggregation. Given their colloidal stability in high ionic-strength matrices, functionalized MetNPs are anticipated to be persistent aquatic contaminants. Despite their potential environmental significance, the persistence of surface- functionalized MetNPs as individually-stabilized nanoparticles in aquatic environments is largely unknown. Further, few studies have investigated the fundamental factors that influence MetNP uptake and fate/transport processes in ecologically susceptible aquatic biota, such as filter- feeding bivalves, which ingest and accumulate a broad range of dissolved- and particulate-phase contaminants.
The present study describes a comprehensive approach to prepare and rigorously characterize MetNP test suspensions to facilitate fundamental examinations of nanoparticle uptake and fate/transport processes in freshwater and marine bivalves. We demonstrate the importance of accurately characterizing test suspensions in order to better understand MetNP persistence as individually-stabilized nanoparticles within aquatic test media, and define an optical-activity metric suitable for quantifying and comparing the persistence of variable MetNP formulations as National Nanotechnology Initiative (NNI) definable nanoscale materials. We also show that individually-stabilized MetNPs of variable elemental composition, particle diameter, and surface coating are accessible to bivalves in both freshwater and marine environments. Clearance rates for MetNPs are positively related to the diameter and initial concentration of MetNP suspensions. The observed size-dependence of particle filtration rates facilitates ‘size-selective biopurification' of particle suspensions with nanoscale resolution, and may have applicability in future sustainable nanomanufacturing processes. Filtered MetNPs are retained for extended periods post-exposure primarily within the bivalve digestive tract and digestive gland, but migration to other organ systems was not observed. Clusters of MetNPs were recovered in concentrated form from excreted feces, suggesting that biotransformation and biodeposition processes will play an important role in transferring MetNPs from the water column to benthic environments. / Ph. D.
|
15 |
Conception, élaboration et caractérisation d’emballages actifs absorbeurs d’O2 / Design, development and characterization of O2 scavenger active packagingKombaya Touckia Linin, Erland Modeste 29 January 2019 (has links)
Actuellement, on observe le développement de nouveaux matériaux, à savoir les matériaux actifs, au travers de divers processus et applications. Par exemple, l’utilisation de nanoparticules de fer (NanoFe) absorbantes d’O2 dans le cadre de l’emballage actif, implique la maîtrise de plusieurs paramètres pour une application en tant que matériau actif. En effet, il est indispensable d’avoir une très bonne compréhension des mécanismes d’oxydation et de consommation d’O2, de pouvoir quantifier les capacités d’absorption ainsi que la vitesse d’absorption d’O2. Bien que nécessaires, ces deux paramètres n’ont été jusqu’à présent que peu caractérisés et encore moins mis en relation avec les propriétés morphologiques (tailles, surface spécifique, etc) et physico-chimiques (tel que l’état du fer) des nanoparticules de fer mises en oeuvre.Dans le but de concevoir à façon un film d’emballage monocouche absorbeur d’O2, ce travail vise à combiner une barrière passive, liée au phénomène de tortuosité induit par la présence des lamelles d’argile dispersées dans une matrice polymérique et une barrière active, liée à l’absorption d’oxygène par les NanoFe synthétisées. Les Nano-Fe ont été synthétisées par réduction chimique au Borohydrure de sodium sur support d’argile Montmorillonite (MMT). La caractérisation MET a révélé la formation d'agrégats de nanoparticules de fer d'une taille moyenne de 57 ± 17 nm dispersées sur la surface des MMT. La cinétique Mössbauer sur la poudre MMT-Fe confirme que les différentes phases du fer (Fe0 et FeII) dans les nanoparticules de fer ne s'oxydent pas à la même vitesse. Cela a permis d’ajuster le modèle mathématique de prédiction des propriétés d’absorption de l’O2. L'étude de propriétés d'absorption d’O2 sur les poudres a montré que la constante de réaction (k), le coefficient de proportionnalité (n) et les capacités d'absorption d’O2 sont du même ordre de grandeur pour la poudre humide, séchée et stockée. Les films nanocomposites préparés à partir des poudres séchées de MMT-Fe synthétisées, incorporées dans un polymère de LLDPE ont montré une bonne capacité d’absorption, mais inférieure à celle de la poudre seule, lié à l’oxydation avancée du fer dans ces films, confirmée par la spectroscopie Mössbauer (les films sont oxydés à 60% contre 30% pour les poudres). Un modèle numérique utilisant la seconde loi de Fick couplée au système d’équations de cinétique chimique obtenue sur la poudre, a permis de prédire le phénomène de diffusion et réaction de l'oxygène dans des films réalisés. Ce modèle est comparé aux données expérimentales obtenues par oxydation de films. En parallèle, une étude de la cinétique d'absorption d’absorbeurs d’O2 commerciaux, couramment utilisés dans les emballages sous atmosphère modifiée, a été effectuée. Sur ces systèmes commerciaux, la cinétique d'absorption a été décrite aussi par une réaction de cinétique de second ordre avec un comportement de type Arrhenius pour l’effet de la température. Toutefois, la spectroscopie Mössbauer a révélé que, dans ce cas-là, seule l’espèce Fe0 était prépondérante pour décrire la cinétique (celle de FeII étant négligeable tant elle est rapide). Nous avons montré pour la première fois, que la spectroscopie de Mössbauer peut être couplée avec succès à la mesure de l'oxygène afin de caractériser in situ l’oxydation du fer, sa spéciation et la capacité d’absorption d’O2. Cette configuration associant spectroscopie de Mössbauer et mesure de l’oxygène ont fourni des informations précieuses sur les mécanismes réactionnels régissant les absorbeurs d’O2. Tous ces résultats auront des implications importantes pour la compréhension de l’absorption d’oxygène dans le système actif absorbeur d’O2. / Currently, we are seeing the development of new materials, namely active materials, through various processes and applications. Among these active materials, the use of O2 scavenging iron nanoparticles (NanoFe) as required knowledge of several parameters for efficient application in the field of food packaging such as knowledge about oxidation mechanism and O2 consumption rate. These parameters are necessary to be able to quantify the absorption capacity and absorption rate of O2. Although necessary, these two parameters have so far been little characterized and even less related to the morphological (size, specific surface, etc.) and physico-chemical properties (such as the iron speciation) of iron nanoparticles implemented.In order to tailor nanocomposite film with O2 scavenging properties, this work aims to combine a passive barrier, related to the phenomenon of tortuosity induced by the presence of clay platelets dispersed in a polymeric matrix and an active barrier, related to oxygen uptake by synthesized NanoFe. Nano-Fe were synthesized by chemical reduction with sodium borohydride on Montmorillonite clay (MMT) support. The TEM characterization revealed the formation of iron nanoparticle aggregates with an average size of 57 ± 17 nm scattered on the MMT surface. The Mössbauer kinetics on the MMT-Fe powder confirms that the different iron phases (Fe0 and FeII) in the iron nanoparticles do not oxidize at the same speed. This allowed to adjust the mathematical model of O2 absorption properties prediction. The study of O2 absorption properties on powders has shown that the reaction constant (k), the proportionality coefficient (n) and the O2 absorption capacities are of the same order of magnitude for the wet, dried and stored powders. The nanocomposite films prepared from the synthesized MMT-Fe dried powders incorporated in a LLDPE polymer showed good absorption capacity, but lower than that of the fresh powder, related to the advanced oxidation of iron in these films, confirmed by Mössbauer spectroscopy (films are 60% oxidized versus 30% for powders). A numerical model using the second law of Fick coupled to the system of chemical kinetics equations obtained on the powder, made it possible to predict the phenomenon of diffusion and reaction of oxygen in films produced. This model was compared with experimental data obtained by measuring O2 absorption by films. In parallel, a study of the absorption kinetics of commercial O2 scavengers, commonly used in modified atmosphere packaging, was carried out. On these commercial systems, absorption kinetics has also been described by a second-order kinetic reaction with Arrhenius-like behavior for the effect of temperature. Mössbauer spectroscopy revealed that, in this case, only the Fe0 species were predominant to describe the kinetics (that of FeII being negligible as it was fast). We have shown for the first time that Mössbauer spectroscopy can be successfully coupled to the measurement of oxygen in order to characterize iron oxidation, speciation and O2 absorption capacity in situ. This configuration associating Mössbauer spectroscopy and oxygen measurement provided valuable information on the reaction mechanisms governing the O2 absorbers. All of these results will have important implications for understanding oxygen uptake in the active O2 absorber system.
|
16 |
Electrosynthèse assistée par ultrasons de nanoparticules de fer à valence zéro : étude de la croissance de dépôts et de leur dispersion par ondes acoustiques / Ultrasounds assisted electrosynthesis of zero valence iron nanoparticles : study of the deposit growth and dispersion by acoustic wavesIranzo, Audrey 25 November 2016 (has links)
La synthèse de nanoparticules de fer zéro-valent, par le couplage des procédés d'ultrasonication et d'électrodéposition, est étudiée selon deux approches. La première partie de l'étude s'intéresse à l'influence du substrat, utilisé pour l'électrodéposition, sur la croissance des dépôts de fer et sur leur dispersion par ultrasonication. L'énergie interfaciale ainsi que l'énergie d'adhésion du dépôt sur le substrat (Y_(Fe/substrat) et W_(Fe/substrat) respectivement) étant reliées à l'énergie de surface et à la rugosité du substrat, un intérêt particulier a été porté à ces deux propriétés. Ainsi, deux matériaux présentant des énergies de surface différentes, l'or (Au) et le carbone vitreux (VC), ainsi que des rugosités différentes ont été testés. Un développement théorique basé sur les interactions de Van der Waals a permis de démontrer que Y_(Fe/VC)>Y_(Fe/Au) ce qui suggère une meilleure affinité du dépôt de fer avec l'or qu'avec le VC. Cette différence influence la morphologie (croissance 2D sur or et 3D sur le VC) mais aussi l'adhésion des dépôts. En effet, les expériences réalisées pour étudier l'effet des ultrasons sur le dépôt de fer révèlent une dispersion du dépôt progressive et complète pour le cas du VC alors qu'aucun détachement du dépôt n'est obtenu en utilisant l'or. La seconde partie de l'étude est consacrée à la synthèse de nanoparticules de fer par une nouvelle approche : l'électrodéposition de dépôts de fer ramifiés est étudiée dans une cellule de Hele-Shaw intégrant un élément vibrant (diaphragme piézoélectrique) permettant à la fois la formation de dépôts de fer et leur fragmentation. Les expériences menées révèlent que les bulles d'hydrogène, formées lors de la co-réduction des protons libres durant l'électrodéposition du fer, influencent fortement le processus de fragmentation. En utilisant des hautes fréquences et amplitudes de vibration du PZT, les bulles d'hydrogène oscillent avec des déformations de surface. Celles-ci génèrent des vitesses d'interface suffisamment hautes (˜ 4 m/s) pour permettre aux bulles de fragmenter des dépôts ramifiés en particules de fer, de tailles comprises entre 1 µm et 100 nm, et présentant une grande surface spécifique due à leur morphologie dendritique. Cette deuxième partie de l'étude permet d'ouvrir la voie à une nouvelle technologie de fabrication des nanoparticules. / This study concerns the coupling of the ultrasounds with the electrodeposition process for the synthesis of zero-valent iron nanoparticles; it is structured in two sections. The first focuses on the electrode substrate used for the iron electrodeposition and aims to determine its influence on both the deposit growth and its dispersion by ultrasonication. The interfacial and the adhesion energies of the deposit on the substrate (Y_(Fe/substrate) and W_(Fe/substrate) respectively) being related to the surface energy and the roughness of the substrate, a particular focus is put on the influence of these two properties. Thus, two materials of different surface energies, gold (Au) and vitreous carbon (VC), as well as various roughnesses, are tested. Considering only the Van der Waals interactions, a theoretical development has enabled to determine that Y_(Fe/VC)>Y_(Fe/Au) which suggests a better affinity of the iron deposit with the gold than with the VC substrate. This difference impacts the deposit morphology (2D growth on the gold and 3D growth on the VC substrate) but also the deposit adhesion. Indeed, experiments performed to study the effect of ultrasounds on the iron electrodeposit reveal its progressive and complete dispersion for the vitreous carbon case while no dispersion (no removal of the deposit from the electrode) is obtained with the gold substrate. The second section of the present study deals with the synthesis of iron nanoparticles; to this end, the electrodeposition of branched deposits has been investigated in a Hele-Shaw cell integrating a vibrating element (piezoelectric diaphragm), expected to allow both the deposit formation and its fragmentation. Experiments reveal that the hydrogen bubbles, formed by the co-reduction of free protons during the iron electrodeposition, strongly influence the fragmentation process. Using high vibration frequencies and high amplitudes, the bubbles oscillate with surface deformations, inducing interface velocity sufficiently high (˜ 4 m/s) to allow the fragmentation of the deposit into particles of sizes ranging between 1 µm and 100 nm and showing a high specific surface due to their dendritic morphology. Thus this work opens the way for a new particles manufacturing technology.
|
17 |
Suivi et devenir des organoétains dans des lixiviats de décharge / Investigations of the fate of organotin compounds in landfill leachatesPeeters, Kelly 20 April 2015 (has links)
Les organoétains sont parmi les polluants les plus dangereux connus à ce jour à avoir été introduits dans les écosystèmes aquatiques par l'homme. Les lixiviats de décharge sont des sources importantes de ces substances toxiques. Afin de minimiser leur rejet dans l'environnement, il est important de comprendre les transformations que les organoétains subissent dans ces lixiviats et d'appliquer des procédures d'assainissement appropriées. Cette thèse a eu pour objectifs principaux i) de contribuer à une meilleure connaissance des processus de transformation des organoétains dans les lixiviats de décharge et ii) d'évaluer le potentiel d’élimination des organoétains par des nanaoparticules de fer (FeNPs). Dans la première partie, les synthèses de TBT enrichi en 117Sn, DBT enrichi en 119Sn, SnCl2 et SnCl4 enrichi en 117Sn, ont été effectuées à partir d’étain métallique enrichi en Sn. La dégradation et la biométhylation des organoétains dans des lixiviats ont été ensuite suivies pendant six mois, en utilisant des traceurs isotopiques enrichis en Sn. Pour discriminer entre les transformations biotiques et abiotiques des organoétains et de l'étain inorganique, des lixiviats stérilisés et non stérilisés ont été considérés et les concentrations en organoétains, mesurées dans chaque lixiviat, ont été comparées. Par la suite, les procédés pouvant conduire à l'élimination du TBT et du TMeT présents dans les lixiviats de décharge, par traitement du lixiviat par différents type de FeNPs ont été étudiés. Le TBT est plus efficacement éliminé (96%) lorsque un traitement séquentiel des lixiviats avec nZVI (dispersé par agitation) est appliqué, d'abord par mise en contact à pH 8, puis par traitement de la phase aqueuse avec nZVI acidifiée à pH 3 avec de l'acide citrique. Enfin, afin de prendre en compte les effets induits par les procédés de traitement par les nanoparticules de fer, leur comportement a été étudié après leur introduction dans des eaux environnementales (eau de source et lixiviat de décharge) différant par leur force ionique et leur contenu de matière organique. L'efficacité de l'élimination des métaux sélectionnés par les FeNPs a également été évaluée. Les nanoparticules ayant des éléments adsorbés à leur surface peuvent contribuer à une contamination du milieu dans lequel elles ont été introduites. / OTCs are among the most hazardous pollutants known so far to have ever been introduced into aquatic ecosystems by man. Landfill leachates are an important pool of these toxic substances. In order to minimise their release to the nearby environment it is important to understand the transformations that OTCs undergo in landfill leachates and to apply appropriate remediation procedures. This thesis has as main objectives i) to contribute to a better knowledge on transformation processes of OTCs in landfill leachates and ii) to evaluate the potential of OTCs removal by iron nanoparticles (FeNPs). In the first part, ‘‘In house’’ synthesis of individual 117Sn-enriched TBT, 119Sn-enriched DBT, 117Sn-enriched SnCl2 and 117Sn-enriched SnCl4 was performed, starting from Sn-enriched metallic tin. Next, the degradation and biomethylation of OTCs in landfill leachates were investigated over a time span of six months, using Sn-enriched isotopic tracers. To discriminate between biotic and abiotic transformations of OTCs and inorganic tin species, sterilized and non-sterilized leachate samples were investigated and the concentrations of OTCs in each sample were compared. Thereafter, the processes for the removal of TBT and TMeT from landfill leachates by different FeNPs were studied. It was proven that TBT could be the best removed by a sequential treatment procedure by first adding nZVI (dispersed by mixing) at pH 8, and then by treating with nZVI the aqueous phase, which is acidified to pH 3 with citric acid. Last, to take in account the effects that are induced by treatment procedures with FeNPs, their behaviour was studied after their introduction to environmental waters (forest spring water and landfill leachate), which differ in their ionic strength and the content of organic matter. The efficiency of the removal of selected metals by FeNPs was also evaluated. It was observed that elements which are adsorbed on the surface of FeNPs can contribute to the contamination of the environment in which they are introduced.
|
18 |
S?ntese e caracteriza??o do comp?sito ferro zero-valente nanoparticulado/carv?o ativado granulado (nFZV-CAG) e sua aplica??o para remo??o do f?rmaco nimesulida pelos processos adsor??o/redu??o e ozoniza??o catal?tica heterog?neaOliveira, Fernanda Gandra de 13 September 2016 (has links)
"Resumo/Abstract", "palavras-chave/keywords" nos cap?tulos trabalho. / Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2017-03-27T20:52:05Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
fernanda_gandra_oliveira.pdf: 3187185 bytes, checksum: 690bd6e7967bbab89412d221de93c88a (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2017-04-24T14:26:09Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
fernanda_gandra_oliveira.pdf: 3187185 bytes, checksum: 690bd6e7967bbab89412d221de93c88a (MD5) / Made available in DSpace on 2017-04-24T14:26:09Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
fernanda_gandra_oliveira.pdf: 3187185 bytes, checksum: 690bd6e7967bbab89412d221de93c88a (MD5)
Previous issue date: 2016 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Funda??o de Amparo ? Pesquisa do Estado de Minas Gerais (FAPEMIG) / O comp?sito nFZV-CAG foi empregado para a ozoniza??o catal?tica heterog?nea da NMS em
meio aquoso. O oz?nio foi gerado por uma central geradora de oz?nio IPABRAS, alimentada
com ar. Foram avaliados diferentes processos catal?ticos como O3, CAG, O3-CAG, O3-nFZV-
CAG, e a varia??o da concentra??o das nFZV para remo??o da NMS. Os resultados mostraram
que a combina??o do O3-nFZV-CAG foi muito eficiente levando ? mineraliza??o de
aproximadamente 70% da NMS em 120 min de rea??o. Tal efici?ncia pode estar atribu?da ao
processo de eletr?lise, em que o Fe0
origina Fe2+
levando ? produ??o do radical hidroxila que ?
altamente oxidante, levando a destrui??o do contaminante. As rea??es seguiram a cin?tica
pseudo-primeira ordem para remo??o do f?rmaco. Ap?s realizada a coleta as amostras foram
submetidas a an?lise qu?mica, empregando-se as t?cnicas de espectrofotometria de UV-Vis,
cromatografia l?quida de alta efici?ncia (CLAE) e a determina??o da demanda qu?mica de oxig?nio
(DQO) tamb?m foi realizada. / As nanopart?culas de FZV imobilizadas sobre a superf?cie do carv?o ativado (nFZV-CAG)
foram sintetizadas e caracterizadas para remo??o do f?rmaco Nimesulida (NMS) em sistemas
aquosos. Os estudos foram realizados em bateladas com agita??o de 250 rpm durante 120
minutos, onde foram avaliadas a efici?ncia, concentra??o (20, 25 e 30% do comp?sito) e
diferentes dosagens (0,1 a 10g) de nFZV-CAG. Os resultados mostraram que a dosagem de 10
g de 20%nFZV-CAG removeu cerca de 80% da NMS 50 mg L-1
em apenas 30 minutos de
rea??o, e atingindo 100% em 120 minutos. Foi observada ainda uma remo??o de 80% da DQO
ao final da rea??o. As velocidades de rea??o aumentaram na medida em que foram aumentadas
as dosagens do comp?sito, o que seria esperado. Por?m, com o aumento da concentra??o (%)
de nFZV n?o houve aumento na velocidade das rea??es. As rea??es seguiram uma cin?tica de
pseudo-primeira ordem em rela??o ? remo??o da NMS. Ap?s realizada a coleta, as amostras
foram submetidas a an?lise qu?mica, empregando-se as t?cnicas de espectrofotometria de UV-
VIS, cromatografia l?quida de alta efici?ncia (CLAE) e a determina??o da demanda qu?mica de
oxig?nio (DQO) tamb?m foi realizada. Para caracteriza??o do comp?sito foram empregadas as
t?cnicas Microscopia Eletr?nica de Varredura acoplada ? Espectrometria de Energia Dispersiva
de Raios-X (MEV-EDS), que mostraram claramente a presen?a da nanopart?culas sobre a
superf?cie do carv?o, e analise de superf?cie do nFZV-CAG e do CAG tamb?m foram
realizadas. / Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Qu?mica, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2016. / The FZV nanoparticles immobilized onto the surface of the activated charcoal (nFZV-CAG)
were synthesized and characterized for the removal of the pharmaceutical Nimesulide (NMS)
in aqueous systems. The studies were performed in batch mode with stirring speeds of 250 rpm
during 120 minutes, so that it was possible to evaluate efficiency, concentration (20, 25 and
30% of the composite) and different dosages (0,1 to 10g) of nFZV-CAG. The results showed
that the dosage of 10g of 20%nFZV-CAG removed approximately 80% of NMS 50 mg L-1
in
just 30 minutes of reaction, and reaching 100% in 120 minutes. It was still observed a removal
of 80% of the COD (Chemical Oxygen Demand) at the end of the reaction. The reaction rates
increased with the dosage of the composite, which was expected. Though, increasing the
concentration (%) of nFZV did not result in higher reaction rates. The reactions followed a
pseudo-first order kinetics for the removal of NMS. After the samples were collected, they were
submitted to chemical analysis, employing the techniques of UV-VIS spectroscopy, high
performance liquid chromatography (HPLC) and chemical oxygen demand (COD). In order to
characterize the composite, the following techniques were used: Scanning Electron Microscopy
(SEM) coupled with Energy Dispersive x-Ray spectroscopy (EDS), which showed clearly the
presence of nanoparticles onto the charcoal surface. Analysis of the surface of nFZV-CAG were
also performed. / The composite nFZV-CAG was used for the catalytic ozonation of NMS in aqueous media. The
ozone was generated by an ozone generator IPABRAS, fuelled with air. Different catalytic
processes were evaluated such as O3, CAG, O3-CAG, O3-nFZV-CAG, and the variation of the
nFZV concentration for the removal of NMS. The results showed that the combination of O3-
nFZV-CAG was very efficient, leading to the mineralization of approximately 70% of NMS in
120 minutes of reaction. Such efficiency can be attributed to the electrolysis process, in which
the Fe0
generates Fe2+
which generates hydroxyl radicals that are highly oxidant, leading to the
destruction of the contaminant. The reactions followed the pseudo-first order kinetics for the
removal of the pharmaceutical. After the samples were collected, they were submitted to
chemical analysis such as, UV-VIS spectroscopy, high performance liquid chromatography
(HPLC) and chemical oxygen demand (COD).
|
19 |
THERMAL PROPERTIES OF MAGNETIC NANOPARTICLES IN EXTERNAL AC MAGNETIC FIELDLukawska, Anna Beata 30 May 2014 (has links)
No description available.
|
Page generated in 0.0945 seconds