1 |
Credit risk measurement model for small and medium enterprises : the case of ZimbabweDambaza, Marx January 2020 (has links)
Abstracts in English, Zulu and Southern Sotho / The advent of Basel II Capital Accord has revolutionised credit risk measurement (CRM) to the extent that the once “perceived riskier bank assets” are now accommodated for lending. The Small and Medium Enterprise (SME) sector has been traditionally perceived as a riskier and unprofitable asset for lending activity by Commercial Banks, in particular. But empirical studies on the implementation of the Basel II internal-ratings-based (IRB) framework have demonstrated that SME credit risk is measurable. Banks are still finding it difficult to forecast SME loan default and to provide credit to the sector that meet Basel’s capital requirements. The thesis proposes to construct an empirical credit risk measurement (CRM) model, specifically for SMEs, to ameliorate the adverse effects of SME credit inaccessibility due to high information asymmetry between financial institutions (FI) and SMEs in Zimbabwe. A well-performing and accurate CRM helps FIs to control their risk exposure through selective granting of credit based on a thorough statistical analysis of historical customer data. This thesis develops a CRM model, built on a statistically random sample, known-good-bad (KGB) sample, which is a better representation of the through-the-door (TTD) population of SME loan applicants. The KGB sample incorporates both accepted and rejected applications, through reject inference (RI). A model-based bound and collapse (BC) reject inference methodology was empirically used to correct selectivity bias inherent in CRM domain. The results have shown great improvement in the classification power and aggregate supply of credit supply to the SME portfolio of the case-studied bank, as evidenced by substantial decrease of bad rates across models developed; from the preliminary model to final model designed for the case-studied bank. The final model was validated using both bad rate, confusion matrix metrics and Area under Receiver Operating Characteristic (AUROC) curve to assess the classification power of the model within-sample and out-of-sample. The AUROC for the final model (weak model) was found to be 0.9782 whilst bad rate was found to be 14.69%. There was 28.76% improvement in the bad rate in the final model in comparison with the current CRM model being used by the case-studied bank. / Isivumelwano seBasel II Capital Accord sesishintshe indlela yokulinganisa ubungozi bokunikezana ngesikweletu credit risk measurement (CRM) kwaze kwafika ezingeni lapho izimpahla ezazithathwa njengamagugu anobungozi “riskier bank assets” sezimukelwa njengesibambiso sokuboleka imali. Umkhakha wezamaBhizinisi Amancane naSafufusayo, phecelezi, Small and Medium Enterprise (SME) kudala uqondakala njengomkhakha onobungozi obukhulu futhi njengomkhakha ongangenisi inzuzo, ikakhulu njengesibambiso sokubolekwa imali ngamabhange ahwebayo. Kodwa izifundo zocwaningo ezimayelana nokusetshenziswa nokusetshenziswa kwesakhiwo iBasel II internal-ratings-based (IRB) sezikhombisile ukuthi ubungozi bokunikeza isikweletu kumabhizinisi amancane nasafufusayo (SME) sebuyalinganiseka. Yize kunjalo, amabhange asathola ukuthi kusenzima ukubona ngaphambili inkinga yokungabhadeleki kahle kwezikweletu kanye nokunikeza isikweletu imikhakha enemigomo edingekayo yezimali kaBasel. Lolu cwaningo beluphakamisa ukwakha uhlelo imodeli ephathekayo yokulinganisa izinga lobungozi bokubolekisa ngemali (CRM) kwihlelo lokuxhasa ngezimali ama-SME, okuyihlelo elilawulwa yiziko lezimali ezweni laseZimbabwe. Imodeli ye-CRM esebenza kahle futhi eshaya khona inceda amaziko ezimali ukugwema ubungozi bokunikezana ngezikweletu ngokusebenzisa uhlelo lokunikeza isikweletu ababoleki abakhethekile, lokhu kususelwa ohlelweni oluhlaziya amanani edatha engumlando wekhasimende. Imodeli ye-CRM ephakanyisiwe yaqala yakhiwa ngohlelo lwamanani, phecelezi istatistically random sample, okuluphawu olungcono olumele uhlelo lwe through-the-door (TTD) population lokukhetha abafakizicelo zokubolekwa imali bama SME, kanti lokhu kuxuba zona zombili izicelo eziphumelele kanye nezingaphumelelanga. Indlela yokukhetha abafakizicelo, phecelezi model-based bound-and-collapse (BC) reject-inference methodology isetshenzisiwe ukulungisa indlela yokukhetha ngokukhetha ngendlela yokucwasa kwisizinda seCRM. Imiphumela iye yakhombisa intuthuko enkulu mayelana namandla okwehlukanisa kanye nokunikezwa kwezikweletu kuma SME okungamamabhange enziwe ucwaningo lotho., njengoba lokhu kufakazelwa ukuncipha okukhulu kwe-bad rate kuwo wonke amamodeli athuthukisiwe. Imodeli yokuqala kanye neyokugcina zazidizayinelwe ibhange. Imodeli yokugcina yaqinisekiswa ngokusebenzisa zombili indlela isikweletu esingagculisi kanye negrafu ye-Area under Receiver Operating Characteristic (AUROC) ukulinganisa ukwehlukaniswa kwamandla emodeli engaphakathi kwesampuli nangaphandle kwesampuli. Uhlelo lwe-AUROC lwemodeli yokugcina (weak model) lwatholakala ukuthi luyi 0.9782, kanti ibad rate yatholakala ukuthi yenza i-14.69%. Kwaba khona ukuthuthuka nge-28.76% kwi-bad rate kwimodeli yokugcina uma iqhathaniswa nemodeli yamanje iCRM model ukuba isetshenziswe yibhange elithile. / Basel II Capital Accord e fetotse tekanyo ya kotsi ya mokitlane (credit risk measurement (CRM)) hoo “thepa e kotsi ya dibanka” ka moo e neng e bonwa ka teng, e seng e fuwa sebaka dikadimong. Lekala la Dikgwebo tse Nyane le tse Mahareng (SME) le bonwa ka tlwaelo jwalo ka lekala le kotsi e hodimo le senang ditswala bakeng sa ditshebetso tsa dikadimo haholo ke dibanka tsa kgwebo. Empa dipatlisiso tse thehilweng hodima se bonweng kapa se etsahetseng tsa tshebetso ya moralo wa Basel II internal-ratings-based (IRB) di supile hore kotsi ya mokitlane ya SME e kgona ho lekanngwa. Leha ho le jwalo, dibanka di ntse di thatafallwa ke ho bonelapele palo ya ditlholeho tsa ho lefa tsa diSME le ho fana ka mokitla lekaleng leo le kgotsofatsang ditlhoko tsa Basel tsa ditjhelete. Phuputso ena e ne sisinya ho etsa tekanyo ya se bonwang ho mmotlolo wa kotsi ya mokitlane (CRM) tshebetsong ya phano ya tjhelete ya diSME e etswang ke setsi sa ditjhelete (FI) ho la Zimbabwe. Mmotlolo o sebetsang hantle hape o fanang ka dipalo tse nepahetseng o dusa diFI hore di laole pepeso ya tsona ho kotsi ka phano e kgethang ya mokitlane, e thehilweng hodima manollo ya dipalopalo ya dintlha tsa histori ya bareki. Mmotlolo o sisingwang wa CRM o hlahisitswe ho tswa ho sampole e sa hlophiswang, e leng pontsho e betere ya setjhaba se ikenelang le monyako (TTD) ya batho bao e kang bakadimi ba tjhelete ho diSME, hobane e kenyelletsa bakopi ba amohetsweng le ba hannweng. Mokgwatshebetso wa bound-and-collapse (BC) reject-inference o kentswe tshebetsong ho nepahatsa tshekamelo ya kgetho e leng teng ho lekala la CRM. Diphetho tsena di bontshitse ntlafalo e kgolo ho matla a tlhophiso le palohare ya phano ya mokitlane ho diSME tsa banka eo ho ithutilweng ka yona, jwalo ka ha ho pakilwe ke ho phokotseho ya direite tse mpe ho pharalla le dimmotlolo tse hlahisitsweng. Mmotlolo wa ho qala le wa ho qetela e ile ya ralwa bakeng sa banka. Mmotlolo wa ho qetela o ile wa netefatswa ka tshebediso ya bobedi reite e mpe le mothinya wa Area under Receiver Operating Characteristic (AUROC) ho lekanya matla a kenyo mekgahlelong a mmotlolo kahare ho sampole le kantle ho yona. AUROC bakeng sa mmotlo wa ho qetela (mmotlolo o fokotseng) e fumanwe e le 0.9782, ha reite e mpe e fumanwe e le 14.69%. Ho bile le ntlafalo ya 28.76% ho reite e mpe bakeng sa mmotlolo wa ho qetela ha ho bapiswa le mmotlolo wa CRM ha o sebediswa bankeng yona eo. / Graduate School of Business Leadership / D.B.L.
|
2 |
ICT adoption in a multicultural context: a case study of the African UnionThuiya, Robert W. 04 1900 (has links)
Text in English with summary and key words in English, isiZulu and Afrikaans / Information and Communications Technology (ICT) adoption in a multicultural context needs to be well understood, since smooth ICT operations within several key sections of any multicultural organisation are impacted on by cultural factors. This study seeks to investigate the importance and effects of several variables – cultural tastes, cultural values, social structures, and the communication context and language – on ICT adoption in the African Union (AU). It also enhances understanding of issues faced by AU when adopting ICT in their daily operations.
The study has reviewed theoretical literature, specifically Diffusion of Innovation Theory (DIT), Unified Theory of Acceptance and Use of Technology (UTAUT), The Competing Values Framework/Model, and Value-Based Adoption Model (VAM). The study used the value-based adoption model because in a multicultural environment such as AU, if an innovation is valuable and cost effective then they users are likely to adopt it.
Reliability scores of the constructs were calculated by averaging the scores. The variables that could cause impact on ICT adoption included cultural values, social structure, culture taste, language and communication context. The tool was tested for reliability, and those questions that were found and unreliable questions were taken out from the final study. To enhance the test of validity of factors, Exploratory Factor Analysis (EFA) was preferred as the initial step in the validation process.
The research was conducted at the AU offices within and outside of Ethiopia. A total of 288 participants completed a semi-structured questionnaire. Exploratory factor analysis was used. The findings indicate that language and cultural taste had a noteworthy effect at the stated significance level (α<0.05). Cultural values, communication, social structure and the communication context were found to be insignificant at the stated significance level (α<0.05).
The study recommends that the AU embraces inclusivity of different and diverse languages into its ICT systems, to facilitate adoption and use by employees. In conclusion, the study points out that cultural tastes and languages are the vital elements in the adoption of ICT in the AU. / Ukwamukelwa kohlelo lezobuChwepheshe Bolwazi Kanye nokuXhumana (Information and communications technology (ICT) kwizidingo zesimo esiqukethe amasiko amaningi kufanele kuzwisiseke kahle, njengoba imisebenzi ehamba kahle yohlelo lwe-ICT kwimikhakha esemqoka yanoma iyiphi inhlangano enamasiko amaningi ithintwa yimithelela yosikompilo. Lolu cwaningo luqonde ukuphenya ukubaluleka Kanye nemithelela yezinto ezahlukene, kuxutshwa phakathi izinhlobo zamasiko, ubuhle bamasiko, izakhowo zomphakathi, Kanye nesimo sokuxhumana Kanye nolimi, phezu kokwamukelwa kwe-ICT kwinhlangano yoBunye be-Afrika (African Union (AU), ngenhloso yokuqinisa ulwazi lwezinto ezihlupha inhlangano ye-AU, uma yamukela uhlelo lwe-ICT kwimisebenzi yalo yansuku zonke.
Ucwaningo luye lwabuyekeza ukuba khona ithiyori yombhalo wobuciko, ikakhulu ithiyori ebizwa nge-Diffusion of Innovation Theory (DIT), uhlelol lwe-Unified Theory of Acceptance and Use of Technology (UTAUT), uhlelo lwe-Competing Values Framework/Model Kanye ne-Value-based Adoption Model (VAM). Lolu hlelo lokugcina lusetshenzisiwe, ngoba kwisizinda samasiko amaningi esinjenge-AU, uma ngabe uhlelo lwamaqhinga amasha lutholakala lusemqoka futhi lungembi eqolo, ngakho-ke abasebenzisi balo bangalwamukela.
Ucwaningo lwenziwa kumahovisi enhlangano ye-AU ezindaweni ezimbili ngaphakathi nangaphandle kwezwe lase-Ethiopia. Inani lonke labadlalindima aba-288 bagcwalise umbhalo wemibuzo ombaxambili. Amaphuzu achaza ukwethembeka (reliability scores) ezakhiwo akhalukhuleyithwe ngokuwalinganisa (averaged). Ithuluzi lohlelo lwe-VAM luhlolwe ngenhloso yokuthola izinga lokwethembeka, kanti-ke yinoma iyiphi imibuzo engathembeki isusiwe kucwaningo. Ukuqinisa uhlelo lokuhlola izinga lokufaneleko kwemithelela (validity of factors), ukuhlaziywa kwemithelela ephenyayo (exploratory factor analysis (EFA) kunconywe njengesinyathelo sokuqala kuhlelo lwe-validation. Ulwazi olutholakele luveza ukuthi ulimi kanye losikompilo kube nomthelela obonakalayo kwisilinganiso se (<0.05), kanti izimfundisa ezinhle zamasiko, ukuxhumana, isakhiwo somphakathi kanye nesimo sezokuxhumana kutholakele ukuthi akubalulekile kwisilinganiso esichaziwe sezinga le (<0.05).
Ucwaningo luncoma ukuthi i-AU yamukela uhlelo lokufaka amasiko onke ngokusebenzisa izilimi ezahlukahlukene kumasistimu ayo e-ICT, ukunceda ukwamukelwa kanye nokusetshenziswa ngabasebenzi. Sengiphetha, ucwaningo, ucwaningo luyachaza ukuthi izinhlobo ezahlukene zamasiko kanye nezilimi kuyizinhlaka ezisemqoka ekwamukelweni kohlelo lwe-ICT ngaphakathim kwe-AU. / Die ingebruikneming van inligtings- en kommunikasietegnologie (IKT) in ʼn multikulturele konteks moet goed begryp word, aangesien vloeiende IKT-werksaamhede in verskeie sleutelsektore van enige multikulturele organisasie deur kulturele faktore beïnvloed word. Hierdie studie het ten doel gehad om die belangrikheid van verskillende veranderlikes, insluitende kulturele smake, kulturele waardes, sosiale strukture, en die kommunikasiekonteks en -taal, en die invloed daarvan op IKT-ingebruikneming in die Afrika-unie (AU) te ondersoek, met die oog op verbeterde begrip van die kwessies waarmee die AU gekonfronteer word wanneer IKT in hul daaglikse werksaamhede gebruik word.
In die studie is die beskikbare teoretiese literatuur hersien, spesifiek die Diffusie van Innovasie- Teorie (DIT), die Saambindende Teorie van Aanvaarding en Gebruik van Tegnologie (UTAUT), die Mededingende Waardes-raamwerk/-model en die Waardegebaseerde Ingebruikneming-model (VAM). Laasgenoemde is toegepas, want in ʼn multikulturele omgewing soos dié van die AU sal gebruikers waarskynlik ʼn innovasie gebruik indien dit waardevol en kostedoeltreffend is.
Die navorsing is by AU-kantore in sowel as buite Etiopië uitgevoer. Altesaam 288 deelnemers het ʼn halfgestruktureerde vraelys voltooi. Die betroubaarheidspuntetelling van die konstrukte is bereken deur hul gemiddelde te bepaal. Die VAM-hulpmiddel is getoets vir betroubaarheid, en enige onbetroubare vrae is uit die finale studie verwyder. Om die toets van geldigheid van faktore te versterk, is verkennende faktorontleding (EFA) verkies as die aanvanklike stap in die proses van geldigheidsbepaling. Die bevindinge het getoon dat taal en kulturele smaak ʼn noemenswaardige uitwerking op die genoemde beduidendheidspeil (<0.05) gehad het, terwyl kulturele waardes, kommunikasie, sosiale struktuur en die kommunikasiekonteks onbeduidend blyk te wees op die genoemde beduidendheidspeil (<0.05).
Die studie beveel aan dat die AU inklusiwiteit verwelkom deur diverse tale in sy IK-stelsels te gebruik, om aanvaarding en ingebruikneming daarvan deur werknemers te bewerkstellig. Ten slotte: die studie het bevind dat kulturele smake en tale deurslaggewende elemente in die aanvaarding van IKT in die AU is / Ukwamukelwa kohlelo lezobuChwepheshe Bolwazi Kanye nokuXhumana (Information and communications technology (ICT) kwizidingo zesimo esiqukethe amasiko amaningi kufanele kuzwisiseke kahle, njengoba imisebenzi ehamba kahle yohlelo lwe-ICT kwimikhakha esemqoka yanoma iyiphi inhlangano enamasiko amaningi ithintwa yimithelela yosikompilo. Lolu cwaningo luqonde ukuphenya ukubaluleka Kanye nemithelela yezinto ezahlukene, kuxutshwa phakathi izinhlobo zamasiko, ubuhle bamasiko, izakhowo zomphakathi, Kanye nesimo sokuxhumana Kanye nolimi, phezu kokwamukelwa kwe-ICT kwinhlangano yoBunye be-Afrika (African Union (AU), ngenhloso yokuqinisa ulwazi lwezinto ezihlupha inhlangano ye-AU, uma yamukela uhlelo lwe-ICT kwimisebenzi yalo yansuku zonke.
Ucwaningo luye lwabuyekeza ukuba khona ithiyori yombhalo wobuciko, ikakhulu ithiyori ebizwa nge-Diffusion of Innovation Theory (DIT), uhlelol lwe-Unified Theory of Acceptance and Use of Technology (UTAUT), uhlelo lwe-Competing Values Framework/Model Kanye ne-Value-based Adoption Model (VAM). Lolu hlelo lokugcina lusetshenzisiwe, ngoba kwisizinda samasiko amaningi esinjenge-AU, uma ngabe uhlelo lwamaqhinga amasha lutholakala lusemqoka futhi lungembi eqolo, ngakho-ke abasebenzisi balo bangalwamukela.
Ucwaningo lwenziwa kumahovisi enhlangano ye-AU ezindaweni ezimbili ngaphakathi nangaphandle kwezwe lase-Ethiopia. Inani lonke labadlalindima aba-288 bagcwalise umbhalo wemibuzo ombaxambili. Amaphuzu achaza ukwethembeka (reliability scores) ezakhiwo akhalukhuleyithwe ngokuwalinganisa (averaged). Ithuluzi lohlelo lwe-VAM luhlolwe ngenhloso yokuthola izinga lokwethembeka, kanti-ke yinoma iyiphi imibuzo engathembeki isusiwe kucwaningo. Ukuqinisa uhlelo lokuhlola izinga lokufaneleko kwemithelela (validity of factors), ukuhlaziywa kwemithelela ephenyayo (exploratory factor analysis (EFA) kunconywe njengesinyathelo sokuqala kuhlelo lwe-validation. Ulwazi olutholakele luveza ukuthi ulimi kanye losikompilo kube nomthelela obonakalayo kwisilinganiso se (<0.05), kanti izimfundisa ezinhle zamasiko, ukuxhumana, isakhiwo somphakathi kanye nesimo sezokuxhumana kutholakele ukuthi akubalulekile kwisilinganiso esichaziwe sezinga le (<0.05).
Ucwaningo luncoma ukuthi i-AU yamukela uhlelo lokufaka amasiko onke ngokusebenzisa izilimi ezahlukahlukene kumasistimu ayo e-ICT, ukunceda ukwamukelwa kanye nokusetshenziswa ngabasebenzi. Sengiphetha, ucwaningo, ucwaningo luyachaza ukuthi izinhlobo ezahlukene zamasiko kanye nezilimi kuyizinhlaka ezisemqoka ekwamukelweni kohlelo lwe-ICT ngaphakathim kwe-AU. / Die ingebruikneming van inligtings- en kommunikasietegnologie (IKT) in ʼn multikulturele konteks moet goed begryp word, aangesien vloeiende IKT-werksaamhede in verskeie sleutelsektore van enige multikulturele organisasie deur kulturele faktore beïnvloed word. Hierdie studie het ten doel gehad om die belangrikheid van verskillende veranderlikes, insluitende kulturele smake, kulturele waardes, sosiale strukture, en die kommunikasiekonteks en -taal, en die invloed daarvan op IKT-ingebruikneming in die Afrika-unie (AU) te ondersoek, met die oog op verbeterde begrip van die kwessies waarmee die AU gekonfronteer word wanneer IKT in hul daaglikse werksaamhede gebruik word.
In die studie is die beskikbare teoretiese literatuur hersien, spesifiek die Diffusie van Innovasie- Teorie (DIT), die Saambindende Teorie van Aanvaarding en Gebruik van Tegnologie (UTAUT), die Mededingende Waardes-raamwerk/-model en die Waardegebaseerde Ingebruikneming-model (VAM). Laasgenoemde is toegepas, want in ʼn multikulturele omgewing soos dié van die AU sal gebruikers waarskynlik ʼn innovasie gebruik indien dit waardevol en kostedoeltreffend is.
Die navorsing is by AU-kantore in sowel as buite Etiopië uitgevoer. Altesaam 288 deelnemers het ʼn halfgestruktureerde vraelys voltooi. Die betroubaarheidspuntetelling van die konstrukte is bereken deur hul gemiddelde te bepaal. Die VAM-hulpmiddel is getoets vir betroubaarheid, en enige onbetroubare vrae is uit die finale studie verwyder. Om die toets van geldigheid van faktore te versterk, is verkennende faktorontleding (EFA) verkies as die aanvanklike stap in die proses van geldigheidsbepaling. Die bevindinge het getoon dat taal en kulturele smaak ʼn noemenswaardige uitwerking op die genoemde beduidendheidspeil (<0.05) gehad het, terwyl kulturele waardes, kommunikasie, sosiale struktuur en die kommunikasiekonteks onbeduidend blyk te wees op die genoemde beduidendheidspeil (<0.05).
Die studie beveel aan dat die AU inklusiwiteit verwelkom deur diverse tale in sy IK-stelsels te gebruik, om aanvaarding en ingebruikneming daarvan deur werknemers te bewerkstellig. Ten slotte: die studie het bevind dat kulturele smake en tale deurslaggewende elemente in die aanvaarding van IKT in die AU is. / School of Computing / M. Sc. (Computing)
|
Page generated in 0.045 seconds