• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isoflavonsynthasa: přítomnost a aktivita v bobovitých a nebobovitých rostlinách / Isoflavonsynthasa: přítomnost a aktivita v bobovitých a nebobovitých rostlinách

Pičmanová, Martina January 2010 (has links)
Isoflavone synthase (IFS; CYP93C) plays a key role in the biosynthesis of the plant secondary metabolites, isoflavonoids. These phenolic compounds, which are well-known for their multiple biological effects, are produced mostly in leguminous plants (family Fabaceae). However, at least 225 of them have also been described in 59 other families, without any knowledge of orthologues to hitherto known IFS genes from legumes (with the single exception of sugar beet - Beta vulgaris, from the family Chenopodiaceae). In view of these facts, this masters thesis has focused on two main objectives: (1) to identify isoflavone synthase genes in selected leguminous and non-leguminous plants exploiting the PCR strategy with degenerate and non-degenerate primers, and (2) to find a system for the verification of the correct function of these genes. Our methodology for the identification of IFS orthologues was successfully demonstrated in the case of two examined legumes - Phaseolus vulgaris L. and Pachyrhizus tuberosus (Lam.) Spreng, in the genomic DNA of which the complete IFS sequences have been newly identified. To design a procedure for ascertaining the correct function of these genes and others once they have been completely described, a pilot study with IFS from Pisum sativum L. (CYP93C18; GenBank number...

Page generated in 0.0289 seconds