• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problème de Plateau, équations fuchsiennes et problème de Riemann-Hilbert

Desideri, Laura 04 December 2009 (has links) (PDF)
Ce mémoire est consacré à la résolution du problème de Plateau à bord polygonal dans l'espace euclidien et dans l'espace de Minkowski de dimension trois. Il s'appuie sur la méthode de résolution proposée par René Garnier dans le cas euclidien dans un article publié en 1928 et qui a été oublié depuis, voire ignoré à l'époque. Plus géométrique et constructive que la méthode variationnelle, l'approche de Garnier est cependant parfois très compliquée, voire obscure et incomplète. On retranscrit sa démonstration dans un formalisme moderne, tout en proposant de nouvelles preuves plus simples, et en en complétant certaines lacunes. Ce travail repose principalement sur l'utilisation plus systématique des systèmes fuchsiens et la mise en évidence du lien entre la réalité de ces systèmes et leur monodromie. Ceci nous permet d'étendre le résultat de Garnier dans l'espace de Minkowski. La méthode de Garnier repose sur le fait que, par la représentation de Weierstrass spinorielle des surfaces minimales, on peut associer une équation fuchsienne réelle du second ordre définie sur la sphère de Riemann à tout disque minimal à bord polygonal. La monodromie de cette équation est déterminée par les directions orientées des côtés du bord. Pour résoudre le problème de Plateau, on est donc amené à résoudre un problème de Riemann-Hilbert. On procède ensuite en deux étapes : on construit d'abord, par déformations isomonodromiques, la famille de tous les disques minimaux dont le bord est un polygone de directions orientées données. Puis on montre, en étudiant les longueurs des côtés des bords polygonaux, qu'on obtient ainsi tout polygone comme bord d'un disque minimal.
2

Sur les déformations isomonodromiques et la stabilité des équations différentielles

Ben Hamed, Bassem 22 December 2006 (has links) (PDF)
Les activités de recherches menées dans le cadre de cette thèse sont divisées en deux parties: Dans la première partie de cette thèse, nous allons présenter un cas particulier du problème de classification des solutions algébriques de l'équation de Painlevé 6. Ce cas simple se produit quand une solution algébrique donnée satisfait chaque membre d'une famille non-triviale d'équations. Une telle famille non-triviale d'équations contenant au moins deux éléments distincts satisfait toute la famille correspondante à la droite affine contenant ces deux éléments. Ainsi, toute famille non-triviale définie comme précédent, correspondant à un plan affine de l'espace des paramètres. Dans cette partie, nous donnons une classification de tous ces espaces affines avec leurs solutions algébriques associées. La preuve du théorème n'utilise pas la notion d'équations de Picard-Fuchs. On pourra constater que les solutions coïncident avec les solutions obtenues récemment par Doran qui a utilisé des déformations des surfaces elliptiques avec quatres fibres singulières et leurs équations de Picard-Fuchs associées. Dans la suite, on va essayer de donner une explication partielle de cette coïncidence. Rappelons que chaque solution d'une équation de Painlevé 6 donnée est gouvernée par une déformation isomonodromique d'un système Fuchsian approprié possédant quatre points singuliers. Nous disons qu'une telle déformation est géométrique si le système fondamental de solutions est entièrement constituté d'intégrales Abéliennes, qui dépendent algébriquement du paramètre de déformation. Une déformation géométrique d'un système Fuchsien est isomonodormique et définit une solution algébrique d'une équation de Painlevé 6 appropriée. Quand ceci est vrai, nous disons que la solution algébrique de l'équation de Painlevé 6 est d'origine géométrique. Nous montrons que lorsque une solution satisfait une famille d'équations de Painlevé 6, alors ils existent aux moins deux autres familles d'équations de Painlevé 6, telles que cette solution soient d'origine géométrique pour les deux familles. Dans le deuxième partie, on va présenter quelques définitions et notions de base sur les systèmes à retard. Le modèle choisi sera présenté, ainsi que l'existence et l'unicité des solutions pour les équations différentielles fonctionnelles (EDFR) associées. On introduit les méthodes des fonctionnelles de Lyapunov-Krasovskii et de fonction de Razumikhin, qui donnent des conditions suffisantes pour assurer la stabilité de ces systèmes à retard. Puis, on considère des classes de systèmes incertains à retard dans l'état et dans la commande. En utilisant des techniques de Lyapunov, on propose des classes de contrôleurs continus, qui assurent la stabilité globale uniforme exponentielle de ces systèmes en boucle fermée, en imposant quelques conditions assorties sur les incertitudes. La fonction de Laypunov quadratique du système nominal stable (c'est-à-dire, le système assosié en l'absence des incertitudes et du retard) est utilisé comme fonction de Lyapunov candidate du système global. Puis, on va étudier la stabilité absolue d'une classe de systèmes à retard de type de Lurie. Cette classe est présentée comme une interconnexion du feedback d'un système dynamique linéaire et d'une non-linéarité staisfaisant la condition du secteur. En utilisant quelques inégalités intégrales, on obtient une nouvelle condition suffisante de stabilité absolue présentée sous forme d'inégalités matricielles linéaires (LMI). Cette condition améliore celle donnée par Han. Par la suite, on utilisera cette nouvelle condition pour construire un contrôleur basé sur un observateur dépendant du retard, tel que le système erreur soit présenté comme une interconnexion du feedback d'un système linéaire et d'une non-linéarité multiple dépendante aussi du retard et satisfaisant la condition du secteur. Dans la conception de l'observateur, on va étendre les travaux d'Arcak, Kokotovic et Fan dans le cas sans retard.
3

Équations d'isomonodromie, solutions algébriques et dynamique / Isomonodromy equations, algebraic solutions and dynamics.

Girand, Arnaud 31 August 2016 (has links)
Une déformation isomonodromique d'une sphère épointée est une famille de connexions logarithmiques plates sur cette dernière ayant toutes, à conjugaison globale près, la même représentation de monodromie. Ces objets sont paramétrés par les solutions d'une certaine famille d'équations aux dérivées partielles, les systèmes de Garnier, qui sont équivalents dans le cas de la sphère à quatre trous aux équations de Painlevé VI. L'objet des travaux présentés ici est de construire de nouvelles solutions algébriques des ces systèmes dans le cas de la sphère à cinq trous. Dans une première partie, nous classifions les déformations isomonodromiques algébriques obtenues par restriction aux droites d'une connexion logarithmique plate sur le plan projectif complexe dont le lieu polaire est une courbe quintique. On obtient ainsi deux nouvelles familles de solutions algébriques du système de Garnier associé. Dans une deuxième partie, nous exploitons le fait qu'une déformation isomonodromique algébrique correspond à une orbite finie sous l'action du groupe modulaire sur la variété des caractères de la sphère à cinq trous pour obtenir de nouveaux exemples de telles orbites. Nous employons pour ce faire la convolution intermédiaire sur les représentations de groupes libres développée par Katz Enfin, nous décrivons une généralisation partielle de ce procédé au cas d'un tore complexe à deux trous. / We call isomonodromic deformation any family of logarithmic flat connections over a punctured sphere having the same monodromy representation up to global conjugacy. These objects are parametrised by the solutions of a particular family of partial differential equations called Garnier systems, which are equivalent to the Painlevé VI equations in the four punctured case. The purpose of this thesis is to construct new algebraic solutions of these systems in the five punctured case. First, we give a classification of algebraic isomonodromic deformations obtained by restricting to lines some logarithmic flat connection over the complex projective plane whose singular locus is a quintic curve. We obtain two new families of algebraic solutions of the associated Garnier system. In a second part, we use the fact that any algebraic isomonodromic deformation corresponds to a finite orbit under the mapping class group action on the character variety of the five punctured sphere to obtain new examples of such orbits. We do this by using Katz's middle convolution on representations of free groups. Finally, we give a partial generalisation of this procedure in the case of a twice punctured complex torus.
4

Fonctions tau de l'operateur de Dirac sur le cylindre

Lisovyy, Oleg 29 November 2004 (has links) (PDF)
La thèse est consacrée à l'étude d'un analogue du problème de Riemann-Hilbert et de déformations isomonodromiques pour les solutions de l'équation de Dirac sur le cylindre. L'objectif est de faire un lien entre la théorie de déformation et les fonctions de corrélation dans certains modèles intégrables en théorie quantique des champs dans le volume fini. Dans une première partie, nous étudions des solutions multivaluées de l'équation de Dirac, qui réalisent une représentation unitaire de dimension 1 du groupe fondamental du cylindre avec n points marqués. Nous introduisons et étudions la base canonique des solutions, la fonction de Green et la fonction tau de l'opérateur de Dirac singulier. Dans une seconde partie, nous obtenons, de deux facons différentes, les équations différentielles nonlinéaires satisfaites par les fonctions de corrélation du modéle d'Ising sur le cylindre.

Page generated in 0.067 seconds