• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • Tagged with
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Álgebra linear: secções cônicas e aplicações / Irregular bin packing considering loading balancing

Pereira, Robson Edvaldo da Silva 30 June 2017 (has links)
Neste trabalho desenvolvemos o estudo da álgebra linear, secções cônicas e aplicações. Apresentamos os conceitos mais importantes da álgebra linear, estudando os espaços vetorias, subespaços vetoriais, matriz de mudança de base, transformações lineares e produto interno. O principal resultado do trabalho é o teorema espectral que fornece ferramentas para se estudar as secções cônicas não elementares, ou seja, aquelas nas quais uma parábola, elipse ou hipérbole são apresentadas com seus eixos não paralelos aos eixos coordenados do plano cartesiano. Uma vez de posse deste teorema é mostrado um processo prático no qual transformamos uma equação ax2 +bxy +cy2 +dx +ey + g = 0 na equação k1 (x\')2 + k2 (y\')2 + (dx1 + ey1) x\' + (dx2 + ey2) y\' + g = 0 sem o termo misto xy, onde após a eliminação deste, podemos deduzir a equação da cônica identificando assim esta curva. Apresentamos exemplos de cônicas com eixos paralelos e não paralelos aos coordenados do plano cartesiano e utilizamos o software geogebra para visualização. Também discutimos algumas aplicações das cônicas como trajetória de corpos celestes (planeta Terra e um cometa), princípio de reflexão da parábola mostrando o porquê das antenas e dos captadores de ondas sonoras serem parabólicos. Demonstramos um teorema que denominei de identificador de uma curva cônica pois com ele é possível classificar a cônica sem realizar o processo prático, apenas para isso identificamos através da equação ax2 +bxy + cy2 +dx + ey +g = 0, quais os valores de a;b e c e feito isto calculamos o discriminante b2 - 4ac, analisamos os sinais e a nulidade, ou seja, se é maior que zero, menor que zero ou igual a zero, assim é possível classificar a cônica. / The paper develops the study of linear algebra, conic sections and applications. I present the most important concepts of linear algebra, studying vector spaces, vector subspaces, base change matrix, linear transformations, internal product. The main result of the work is the spectral theorem, which provides tools to study the non-elementary conic sections, that is, those in which a parabola, ellipse or hyperbola are presented with their axes not parallel to the cartesian planes coordinate axes. Using this theorem we show a practical process in which we transform an equation ax2 +bxy + cy2 +dx +ey +g = 0 into the equation k1 (x\')2 +k2 (y\')2 + (dx1 +ey1) x\' (dx2 + ey2) y\' +g = 0 without the mixed term xy, where after its elimination we can deduce the conic equation thus identifying the curve we are looking for. I present examples of conic with parallel and non-parallel axes to the coordinates of the Cartesian plane and use the geogebra software for visualization. I discuss some applications of the conic as a trajectory of celestial bodies (planet Earth and a comet), principle of reflection of parabola showing why the antennas and sound wave pickups are parabolics. I demonstrate a theorem that I named the identifier of a conic curve, with it it is possible to classify the conic without realizing the practical process only for this. I identify through the equation ax2 +bxy + cy2 +dx + ey + g = 0, what are the values of a;b, and c and, with this done, I compute the discriminant b2 - 4ac and analyze the signs and the nullity, that is, if it is greater than zero, less than zero or equal to zero, therefore is possible to classify the conic.
2

Resolução de um problema de corte de itens irregulares aplicado à indústria / Resolution of a cutting problem of irregular items used in industry

Jorge, Alfredo Rogerio 14 March 2016 (has links)
Nos problemas de corte de itens irregulares, temos um conjunto de itens menores que devem ser alocados em objetos maiores (recipientes) de forma que estes estejam inteiramente contidos no recipiente e não se sobreponham. Neste trabalho, resolvemos um problema de corte e empacotamento de uma indústria que confecciona aventais e forros de luva, no qual deseja-se alocar uma lista de itens dentro de recipientes retangulares utilizando a menor quantidade de recipientes possível e minimizando o comprimento utilizado em cada recipiente. Para isto, utilizamos métodos exatos e heurísticos adaptados para o corte de aventais e forros de luva, com o objetivo de obter soluções de alta qualidade. Foram realizados experimentos computacionais que comprovaram a eficiência dos métodos de solução presentes neste trabalho. / In nesting problems, we have a set of small items that must be allocated into larger objects (containers) so that they are fully contained within the container and do not overlap. In this work, an apron and gloves lining industry cutting problem is solved, in which we want to allocate a list of items into rectangular containers using the smallest quantity of containers and minimizing the length used in each container. For this, we used exact and heuristic methods adapted for cutting aprons and glove liners, in order to obtain high quality solutions. Computational tests were performed and they show the efficiency of the solving methods presented in this work.
3

Estudo de métodos de solução para problemas de corte de itens irregulares em recipientes irregulares / Study of solution methods for the irregular bin packing problem

Felipe Augusto Aureliano 30 June 2017 (has links)
Dentro da classe de problemas de corte e empacotamento, existem os problemas de corte de itens irregulares (não-circulares e não-retangulares), os quais visam determinar um arranjo ótimo de objetos irregulares menores (itens), sem sobreposição, dentro de objetos maiores (recipientes) a fim de atender a uma demanda. Possuem grande importância prática, uma vez que surgem em vários tipos de indústrias, como a têxtil, a de móveis e a de calçados, por exemplo. Entre estes problemas, ainda temos o chamado problema de corte de itens irregulares em recipientes, no qual estes últimos são fechados, isto é, possuem dimensões fixas, podendo ser retangulares ou irregulares. Neste caso, o objetivo é arranjar todos os itens de modo a utilizar o menor número possível de recipientes. A estes problemas, uma outra restrição ainda pode ser adicionada: os recipientes podem ter defeitos, isto é, áreas onde não pode ser posicionado qualquer item, e regiões com diferentes níveis de qualidade, chamadas de zonas de qualidades, em que apenas determinados itens podem ser alocados. Neste trabalho, portanto, introduzimos um conjunto de heurísticas construtivas para a resolução do problema de corte de itens irregulares em recipientes irregulares com defeitos e zonas de qualidades. Os experimentos computacionais foram realizados utilizando um conjunto com 15 instâncias adaptadas de outro problema de corte de itens irregulares, uma vez que não encontramos instâncias disponíveis na literatura para o problema abordado neste trabalho. Os resultados mostraram que todos os métodos são capazes de resolver o problema em um tempo computacional considerado baixo, sendo que alguns deles apresentam melhor desempenho que outros. / Within the class of cutting and packing problems, there are some problems known as nesting problems, which aim to determine an optimal arrangement of smaller irregular objects (items), without overlap, inside larger objects (bins) in order to attend a demand. They have practical importance, since they arise in many types of industries, such as textiles, furniture and footwear, for example. Among these problems, we still have the so-called irregular bin packing problem in which the bins are closed, that is, they have fixed dimensions, and may be rectangular or irregular. In this case, the goal is to arrange all items in order to use the least amount of bins. To these problems, another constraint can still be added: the bins may have defects, that is, areas where no item can be placed, and different levels of quality, called quality zones, where only specific items can be allocated. In this work, therefore, we introduce a set of constructive heuristics to solve the irregular bin packing problem in which the bins have defects and quality zones. The computational experiments were carried out using a set of 15 instances adapted from another nesting problem, since we did not find instances available in the literature for the problem addressed in this work. The results showed that all methods can solve the problem in a low computational time, and also that some of them perform better than others.
4

Mathematical models and heuristic methods for nesting problems / Modelos matemáticos e métodos heurísticos para os problemas de corte de itens irregulares

Mundim, Leandro Resende 18 August 2017 (has links)
Irregular cutting and packing problems, with convex and non-convex polygons, are found in many industries such as metal mechanics, textiles, of shoe making, the furniture making and others. In this thesis we study the two-dimensional version of these problems, where we want to allocate a set of items, without overlap, inside one or more containers, limited or unlimited, so as to optimize an objective function. In this document we study the knapsack problem, placement problem, strip packing problem, cutting stock problem and bin packing problem. For these problems, the heuristic methods and mathematical programming models are proposed and presented very promising results, surpassing in many cases the best results in the specialized literature. This thesis is organized as follows. In Chapter 1, we present a review of the studied problems, the value proposition for this thesis with the main contributions and ideas. In Chapter 2, we propose a metaheursitic for the strip packing problem with irregular items and circles. Then, in Chapter 3, we present a generic heuristic for the allocation of irregular items that may be weakly or strongly heterogeneous and will be allocated in a container (output maximization problems) or multiple containers (input minimization problems). In Chapter 4, we propose a solution method for the cutting stock problem with deterministic demand and stochastic demand. In Chapters 5 and 6, we present mathematical programming models for the strip packing problem. Finally, in Chapter 7, we present a conclusion and a concise direction for future works. / Os problemas de corte e empacotamento de itens irregulares, polígonos convexos e não convexos, são encontrado em diversas indústrias, tais como a metal-mecânica, a têxtil, a de calçados, a moveleira e outras. Nesta tese estudamos a versão bidimensional destes problemas, na qual desejamos alocar um conjunto de itens, sem sobreposição, no interior de um ou mais recipientes, limitados ou ilimitados, de modo a otimizar uma função objetivo. Neste trabalho estudamos o problema da mochila, o problema do assentamento, o problema empacotamento em faixa, o problema de corte de estoque e o problema de empacotamento de contêineres. Para estes problemas, os métodos heurísticos e modelos de programação matemática propostos e apresentam resultados muito promissores, ultrapassando em muitos casos os melhores resultados da literatura especializada. Esta tese esta organizada da seguinte maneira. No Capítulo 1, apresentamos uma revisão dos problemas estudados, a proposta de valor deste doutorado com as principais contribuições e ideias. No Capítulo 2, propomos uma meta-heurística para o problema de empacotamento em faixa para itens irregulares e círculos. Em seguida, no Capítulo 3 apresentamos uma heurística genérica para a alocação de itens irregulares que podem ser fracamente ou fortemente heterogêneos e serão alocados em um recipiente (problema de maximização de saída) ou de múltiplos recipientes (problemas de minimização de entrada). O Capítulo 4 propõem um método de solução para o problema de corte de estoque com demanda conhecida e demanda estocástica. Nos Capítulos 5 e 6 apresentamos modelos de programação matemática para o problema de corte de itens irregulares em faixa. Finalmente, no Capítulo 7, apresentamos a conclusão e uma sucinta direção para os trabalhos futuros.
5

Empacotamento de itens irregulares considerando balanceamento da carga / Irregular bin packing considering loading balancing

Silva, Raquel Akemi Okuno Kitazume da 21 June 2017 (has links)
O problema de empacotamento de itens irregulares com balanceamento da carga é encontrado no carregamento de aviões, caminhões e navios. O objetivo é empacotar itens irregulares utilizando o menor número de recipientes possível de forma que os recipientes estejam balanceados, que os itens não se sobreponham e estejam inteiramente contidos no recipiente. Neste trabalho, propomos três heurísticas bases com três variações cada para o problema com recipientes retangulares e irregulares. As heurísticas utilizam abordagens diferentes para representar os itens e para fazer o balanceamento. Uma das heurísticas utiliza malha para representação dos itens e faz o balanceamento dividindo o recipiente em quadrantes e revezando a alocação dos itens entre eles de forma que o balanceamento é feito de forma indireta. Tal heurística resolve o problema tanto para recipientes retangulares quanto irregulares. A segunda heurística utiliza a representação dos itens por polígonos e impossibilita a sobreposição de itens utilizando a técnica do nofit polygon. A heurística constrói a solução item por item, sem posições fixas e a cada item alocado, os itens são deslocados em direção ao centro de gravidade desejado do recipiente. Esta heurística resolve apenas problemas com recipientes retangulares. A última heurística é uma adaptação da heurística anterior para a resolução do problema com recipientes irregulares, de forma que o problema é resolvido em duas fases. Cada heurística base possui três variações cada, totalizando nove heurísticas. As heurísticas foram comparadas com outro trabalho da literatura e conseguiram melhorar os resultados para nove das dezenove instâncias testadas. / The irregular bin packing problem with load balancing is found in the loading of airplanes, trucks and ships. The aim is to use as few bins as possible to pack all the items so that all bins are balanced, items do not overlap and are fully contained in the bin. In this work, we propose three base heuristics with three variations each for the problem with rectangular and irregular bin. The three heuristics use different approaches to represent the items and to balance the bin. One of the heuristics uses a grid to represent the items and does the balancing by dividing the container into quadrants and alternating the allocation of items between them so that the balancing is done indirectly. Such heuristic solves the problem for both rectangular and irregular bins. The second heuristic uses the representation of items by polygons and uses the nofit polygon technique. The heuristic constructs the solution item by item, with no fixed positions and with each item allocated, the items are shifted towards the desired center of gravity of the bin. This heuristic only solves problems with rectangular bins. The last heuristic is an adaptation of the previous one to solve the problem with irregular bins, so that the problem is solved in two phases. Each base heuristic has three variations, totaling nine heuristics. The heuristics were compared with other work in the literature and managed to improve the results for nine of the nineteen instances tested.
6

Estudo de métodos de solução para problemas de corte de itens irregulares em recipientes irregulares / Study of solution methods for the irregular bin packing problem

Aureliano, Felipe Augusto 30 June 2017 (has links)
Dentro da classe de problemas de corte e empacotamento, existem os problemas de corte de itens irregulares (não-circulares e não-retangulares), os quais visam determinar um arranjo ótimo de objetos irregulares menores (itens), sem sobreposição, dentro de objetos maiores (recipientes) a fim de atender a uma demanda. Possuem grande importância prática, uma vez que surgem em vários tipos de indústrias, como a têxtil, a de móveis e a de calçados, por exemplo. Entre estes problemas, ainda temos o chamado problema de corte de itens irregulares em recipientes, no qual estes últimos são fechados, isto é, possuem dimensões fixas, podendo ser retangulares ou irregulares. Neste caso, o objetivo é arranjar todos os itens de modo a utilizar o menor número possível de recipientes. A estes problemas, uma outra restrição ainda pode ser adicionada: os recipientes podem ter defeitos, isto é, áreas onde não pode ser posicionado qualquer item, e regiões com diferentes níveis de qualidade, chamadas de zonas de qualidades, em que apenas determinados itens podem ser alocados. Neste trabalho, portanto, introduzimos um conjunto de heurísticas construtivas para a resolução do problema de corte de itens irregulares em recipientes irregulares com defeitos e zonas de qualidades. Os experimentos computacionais foram realizados utilizando um conjunto com 15 instâncias adaptadas de outro problema de corte de itens irregulares, uma vez que não encontramos instâncias disponíveis na literatura para o problema abordado neste trabalho. Os resultados mostraram que todos os métodos são capazes de resolver o problema em um tempo computacional considerado baixo, sendo que alguns deles apresentam melhor desempenho que outros. / Within the class of cutting and packing problems, there are some problems known as nesting problems, which aim to determine an optimal arrangement of smaller irregular objects (items), without overlap, inside larger objects (bins) in order to attend a demand. They have practical importance, since they arise in many types of industries, such as textiles, furniture and footwear, for example. Among these problems, we still have the so-called irregular bin packing problem in which the bins are closed, that is, they have fixed dimensions, and may be rectangular or irregular. In this case, the goal is to arrange all items in order to use the least amount of bins. To these problems, another constraint can still be added: the bins may have defects, that is, areas where no item can be placed, and different levels of quality, called quality zones, where only specific items can be allocated. In this work, therefore, we introduce a set of constructive heuristics to solve the irregular bin packing problem in which the bins have defects and quality zones. The computational experiments were carried out using a set of 15 instances adapted from another nesting problem, since we did not find instances available in the literature for the problem addressed in this work. The results showed that all methods can solve the problem in a low computational time, and also that some of them perform better than others.
7

Resolução de um problema de corte de itens irregulares aplicado à indústria / Resolution of a cutting problem of irregular items used in industry

Alfredo Rogerio Jorge 14 March 2016 (has links)
Nos problemas de corte de itens irregulares, temos um conjunto de itens menores que devem ser alocados em objetos maiores (recipientes) de forma que estes estejam inteiramente contidos no recipiente e não se sobreponham. Neste trabalho, resolvemos um problema de corte e empacotamento de uma indústria que confecciona aventais e forros de luva, no qual deseja-se alocar uma lista de itens dentro de recipientes retangulares utilizando a menor quantidade de recipientes possível e minimizando o comprimento utilizado em cada recipiente. Para isto, utilizamos métodos exatos e heurísticos adaptados para o corte de aventais e forros de luva, com o objetivo de obter soluções de alta qualidade. Foram realizados experimentos computacionais que comprovaram a eficiência dos métodos de solução presentes neste trabalho. / In nesting problems, we have a set of small items that must be allocated into larger objects (containers) so that they are fully contained within the container and do not overlap. In this work, an apron and gloves lining industry cutting problem is solved, in which we want to allocate a list of items into rectangular containers using the smallest quantity of containers and minimizing the length used in each container. For this, we used exact and heuristic methods adapted for cutting aprons and glove liners, in order to obtain high quality solutions. Computational tests were performed and they show the efficiency of the solving methods presented in this work.
8

Mathematical models and heuristic methods for nesting problems / Modelos matemáticos e métodos heurísticos para os problemas de corte de itens irregulares

Leandro Resende Mundim 18 August 2017 (has links)
Irregular cutting and packing problems, with convex and non-convex polygons, are found in many industries such as metal mechanics, textiles, of shoe making, the furniture making and others. In this thesis we study the two-dimensional version of these problems, where we want to allocate a set of items, without overlap, inside one or more containers, limited or unlimited, so as to optimize an objective function. In this document we study the knapsack problem, placement problem, strip packing problem, cutting stock problem and bin packing problem. For these problems, the heuristic methods and mathematical programming models are proposed and presented very promising results, surpassing in many cases the best results in the specialized literature. This thesis is organized as follows. In Chapter 1, we present a review of the studied problems, the value proposition for this thesis with the main contributions and ideas. In Chapter 2, we propose a metaheursitic for the strip packing problem with irregular items and circles. Then, in Chapter 3, we present a generic heuristic for the allocation of irregular items that may be weakly or strongly heterogeneous and will be allocated in a container (output maximization problems) or multiple containers (input minimization problems). In Chapter 4, we propose a solution method for the cutting stock problem with deterministic demand and stochastic demand. In Chapters 5 and 6, we present mathematical programming models for the strip packing problem. Finally, in Chapter 7, we present a conclusion and a concise direction for future works. / Os problemas de corte e empacotamento de itens irregulares, polígonos convexos e não convexos, são encontrado em diversas indústrias, tais como a metal-mecânica, a têxtil, a de calçados, a moveleira e outras. Nesta tese estudamos a versão bidimensional destes problemas, na qual desejamos alocar um conjunto de itens, sem sobreposição, no interior de um ou mais recipientes, limitados ou ilimitados, de modo a otimizar uma função objetivo. Neste trabalho estudamos o problema da mochila, o problema do assentamento, o problema empacotamento em faixa, o problema de corte de estoque e o problema de empacotamento de contêineres. Para estes problemas, os métodos heurísticos e modelos de programação matemática propostos e apresentam resultados muito promissores, ultrapassando em muitos casos os melhores resultados da literatura especializada. Esta tese esta organizada da seguinte maneira. No Capítulo 1, apresentamos uma revisão dos problemas estudados, a proposta de valor deste doutorado com as principais contribuições e ideias. No Capítulo 2, propomos uma meta-heurística para o problema de empacotamento em faixa para itens irregulares e círculos. Em seguida, no Capítulo 3 apresentamos uma heurística genérica para a alocação de itens irregulares que podem ser fracamente ou fortemente heterogêneos e serão alocados em um recipiente (problema de maximização de saída) ou de múltiplos recipientes (problemas de minimização de entrada). O Capítulo 4 propõem um método de solução para o problema de corte de estoque com demanda conhecida e demanda estocástica. Nos Capítulos 5 e 6 apresentamos modelos de programação matemática para o problema de corte de itens irregulares em faixa. Finalmente, no Capítulo 7, apresentamos a conclusão e uma sucinta direção para os trabalhos futuros.
9

Álgebra linear: secções cônicas e aplicações / Irregular bin packing considering loading balancing

Robson Edvaldo da Silva Pereira 30 June 2017 (has links)
Neste trabalho desenvolvemos o estudo da álgebra linear, secções cônicas e aplicações. Apresentamos os conceitos mais importantes da álgebra linear, estudando os espaços vetorias, subespaços vetoriais, matriz de mudança de base, transformações lineares e produto interno. O principal resultado do trabalho é o teorema espectral que fornece ferramentas para se estudar as secções cônicas não elementares, ou seja, aquelas nas quais uma parábola, elipse ou hipérbole são apresentadas com seus eixos não paralelos aos eixos coordenados do plano cartesiano. Uma vez de posse deste teorema é mostrado um processo prático no qual transformamos uma equação ax2 +bxy +cy2 +dx +ey + g = 0 na equação k1 (x\')2 + k2 (y\')2 + (dx1 + ey1) x\' + (dx2 + ey2) y\' + g = 0 sem o termo misto xy, onde após a eliminação deste, podemos deduzir a equação da cônica identificando assim esta curva. Apresentamos exemplos de cônicas com eixos paralelos e não paralelos aos coordenados do plano cartesiano e utilizamos o software geogebra para visualização. Também discutimos algumas aplicações das cônicas como trajetória de corpos celestes (planeta Terra e um cometa), princípio de reflexão da parábola mostrando o porquê das antenas e dos captadores de ondas sonoras serem parabólicos. Demonstramos um teorema que denominei de identificador de uma curva cônica pois com ele é possível classificar a cônica sem realizar o processo prático, apenas para isso identificamos através da equação ax2 +bxy + cy2 +dx + ey +g = 0, quais os valores de a;b e c e feito isto calculamos o discriminante b2 - 4ac, analisamos os sinais e a nulidade, ou seja, se é maior que zero, menor que zero ou igual a zero, assim é possível classificar a cônica. / The paper develops the study of linear algebra, conic sections and applications. I present the most important concepts of linear algebra, studying vector spaces, vector subspaces, base change matrix, linear transformations, internal product. The main result of the work is the spectral theorem, which provides tools to study the non-elementary conic sections, that is, those in which a parabola, ellipse or hyperbola are presented with their axes not parallel to the cartesian planes coordinate axes. Using this theorem we show a practical process in which we transform an equation ax2 +bxy + cy2 +dx +ey +g = 0 into the equation k1 (x\')2 +k2 (y\')2 + (dx1 +ey1) x\' (dx2 + ey2) y\' +g = 0 without the mixed term xy, where after its elimination we can deduce the conic equation thus identifying the curve we are looking for. I present examples of conic with parallel and non-parallel axes to the coordinates of the Cartesian plane and use the geogebra software for visualization. I discuss some applications of the conic as a trajectory of celestial bodies (planet Earth and a comet), principle of reflection of parabola showing why the antennas and sound wave pickups are parabolics. I demonstrate a theorem that I named the identifier of a conic curve, with it it is possible to classify the conic without realizing the practical process only for this. I identify through the equation ax2 +bxy + cy2 +dx + ey + g = 0, what are the values of a;b, and c and, with this done, I compute the discriminant b2 - 4ac and analyze the signs and the nullity, that is, if it is greater than zero, less than zero or equal to zero, therefore is possible to classify the conic.
10

Empacotamento de itens irregulares considerando balanceamento da carga / Irregular bin packing considering loading balancing

Raquel Akemi Okuno Kitazume da Silva 21 June 2017 (has links)
O problema de empacotamento de itens irregulares com balanceamento da carga é encontrado no carregamento de aviões, caminhões e navios. O objetivo é empacotar itens irregulares utilizando o menor número de recipientes possível de forma que os recipientes estejam balanceados, que os itens não se sobreponham e estejam inteiramente contidos no recipiente. Neste trabalho, propomos três heurísticas bases com três variações cada para o problema com recipientes retangulares e irregulares. As heurísticas utilizam abordagens diferentes para representar os itens e para fazer o balanceamento. Uma das heurísticas utiliza malha para representação dos itens e faz o balanceamento dividindo o recipiente em quadrantes e revezando a alocação dos itens entre eles de forma que o balanceamento é feito de forma indireta. Tal heurística resolve o problema tanto para recipientes retangulares quanto irregulares. A segunda heurística utiliza a representação dos itens por polígonos e impossibilita a sobreposição de itens utilizando a técnica do nofit polygon. A heurística constrói a solução item por item, sem posições fixas e a cada item alocado, os itens são deslocados em direção ao centro de gravidade desejado do recipiente. Esta heurística resolve apenas problemas com recipientes retangulares. A última heurística é uma adaptação da heurística anterior para a resolução do problema com recipientes irregulares, de forma que o problema é resolvido em duas fases. Cada heurística base possui três variações cada, totalizando nove heurísticas. As heurísticas foram comparadas com outro trabalho da literatura e conseguiram melhorar os resultados para nove das dezenove instâncias testadas. / The irregular bin packing problem with load balancing is found in the loading of airplanes, trucks and ships. The aim is to use as few bins as possible to pack all the items so that all bins are balanced, items do not overlap and are fully contained in the bin. In this work, we propose three base heuristics with three variations each for the problem with rectangular and irregular bin. The three heuristics use different approaches to represent the items and to balance the bin. One of the heuristics uses a grid to represent the items and does the balancing by dividing the container into quadrants and alternating the allocation of items between them so that the balancing is done indirectly. Such heuristic solves the problem for both rectangular and irregular bins. The second heuristic uses the representation of items by polygons and uses the nofit polygon technique. The heuristic constructs the solution item by item, with no fixed positions and with each item allocated, the items are shifted towards the desired center of gravity of the bin. This heuristic only solves problems with rectangular bins. The last heuristic is an adaptation of the previous one to solve the problem with irregular bins, so that the problem is solved in two phases. Each base heuristic has three variations, totaling nine heuristics. The heuristics were compared with other work in the literature and managed to improve the results for nine of the nineteen instances tested.

Page generated in 0.0906 seconds