• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 11
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Studies On Impinging-Jet Atomizers

Gadgil, Hrishikesh Prabhakar 01 1900 (has links)
Characteristics of impinging-jet atomizers in the context of application in liquid propulsion systems are studied in this thesis. A review of past studies on impinging jets revealed the necessity of a correlation in terms of injector parameters for predicting Sauter Mean Diameter (SMD) of a spray. So, an experimental study of atomization in doublet and triplet impinging jet injectors is conducted using water as the stimulant? The major injector parameters considered are orifice diameter, impingement angle and jet velocity. Relative influences of these parameters are explained in terms of a single parameter, specific normal momentum. SMD of the spray reduces as specific normal momentum is increased. A universal expression between non-dimensional SMD and specific normal momentum is obtained, which satisfactorily predicts SMD in doublets as well as triplets. Noting that practical impinging injectors are likely to have skewness (partial impingement), the study is extended to understand the behavior of such jets. In perfectly impinging doublet, a high aspect ratio ellipse-like mass distribution pattern is obtained with major axis normal to the plane of two jets whereas in skewed jets the major axis turns from its normal position. A simple correlation is obtained, which shows that this angle of turn is a function of skewness fraction and impingement angle only and is independent of injection velocity. Experimental data from both mass distribution and photographic technique validate this prediction. SMD is found to decrease as skewness is increased. This may be the combined effect of shearing of liquid sheet at the point of impingement and more sheet elongation. Hence, skewness turns out to be an important parameter in controlling drop size.
52

Understanding High Speed Mixing Layers with LES and Evolution of Urans Modeling

Sundaram, Iyer Arvind January 2014 (has links) (PDF)
This thesis is concerned with studies on spatially developing high speed mixing layers with twin objectives: (a) to provide enhanced and detailed understanding of spatial development of two-dimensional mixing layer emanating from splitter plate through large eddy simulation (LES, from now on) technique and (b) to evolve a consistent strategy for Unsteady Reynolds Averaged Navier-Stokes (URANS) approach to mixing layer calculations. The inspiration for this work arose out of the explanations that were being developed for the reduction in the mixing layer thickness with compressibility (measured by a parameter called convective Mach number, Mc). The reasons centered around increased stability, increase in compressible dissipation that was later discounted in favor of reduction in production and pressure-strain terms (with Mc, of course). These were obtained with direct numerical simulations (DNS) or LES techniques with homogeneous shear flow or temporal mixing layer. As apart, there was also a wide held view that using RANS (steady) techniques did not capture the compressibility effects when used in a way described above and so classical industrial codes for computing mixing- layer-embedded flows are unsuitable for such applications. Other important aspects that come out of the examination of literature are: the mixing layer growth is controlled in the initial stages by the double- boundary layer profile over the splitter plate and results in the mixing layer growth that is somewhat irregular due to doubling and merging of vertical structures. The view point of a smooth growth of the mixing layer is a theo- retical approximation arising out of the use of a smooth tan-hyperbolic profile that results at larger distances from the splitter plate. For all practical applications, it is inferred that the initial development is what is important because the processes of ignition and stable combustion occur close to the splitter plate. For these reasons, it was thought that understanding the development of the mixing layer is best dealt with using accurate spatial simulation with the appropriate initial profile. The LES technique used here is drawn from an OpenFOAM approach for dissimilar gases and uses one-equation Eddy Model for SGS stresses. The temporal discretization is second order accurate backward Euler and spatial discretization is fourth order least squares; the algorithm used for solving the equations is PISO and the parallelized code uses domain decomposition approach to cover large spatial domain. The calculations are performed with boundary layer profiles over the splitter plate and an initial velocity field with white noise-like fluctuations to simulate the turbulence as in the experiments. Grid independence studies are performed and several experimental cases are considered for comparison with measured data on the velocity and temperature fields as well as turbulent statistics. These comparisons are excellent for the mean field behavior and moderately acceptable for turbulent kinetic energy and shear stress. To further benefit from the LES approach, the details of the mixing layer are calculated as a function of four independent parameters on which the growth depends: convective Mach number (Mc = (U1 -U2)/ (a1 +a2)), stream speed ratio (r = U2=U1), stream density ratio (s = p2/p1) and the average velocity of the two streams ((U1+U2)=2) and examine the various terms in the equations to enable answering the questions discussed earlier. It is uncovered that r has significant influence on the attainment of self similarity (which also implies on the rate of removal of velocity defect in the double-boundary layer profile) and other parameters have a very weak influence. The minimum velocity variation with distance from the splitter plate has the 1/paxial distance behavior like in wakes; however, after a distance, departure to linear rise occurs and the distance it takes for this to appear is delayed with Mc. Other features such as the coherent structures, their merger or break up, the area of the structures, convective velocity information extraction from the coherent structures, the behavior of the pressure field in the mixing layer through the field are elucidated in detail; the behavior of the correlations between parameters (like pressure, velocity etc) at different points is used to elucidate the coherence of their fluctuating field. The effects of the parameters on the energy spectra have expected trends. An examination of the kinetic energy budget terms reveals that • the production term is the main source of the xx turbulence stress, whereas it is not significant in the yy component. • A substantial portion of this is carried by the pressure-velocity coupling from the xx direction to the yy direction, which becomes the main source term in the yy component. • Both, the production term as well as the pressure-velocity term show a clear decrease with increase in Mc. The high point of the thesis is related to using the understanding derived from an analysis of various source terms in the kinetic energy balance to evolve an unsteady Reynolds Averaged Navier Stokes (URANS) model for calculating high speed mixing layers, a subject that has eluded international research till now. It recognizes that the key feature affected by ompressibility is related to the anisotropy of the stress tensor. The relationship between stress component (_Txy) and the velocity gradient (Sxy) as obtained from LES is set out in the form of a simple relationship accounting for the effects of other parameters obtained earlier in this thesis. A minor influence due to _Tyy is extracted by describing its dependence on Sxy again as gleaned from LES studies. The needed variation of Prandtl and Schmidt numbers through the field is extracted. While the detailed variations can in fact be taken into account in URANS simulations, a simple assumption of these values being around 0.3 is chosen for the present simulations of URANS. Introduction of these features into the momentum equation gives the much expected variation of the reduction in the growth rate of the mixing layer with convective Mach number as in experiments. The relationships that can be used in high speed mixing layers are Introduction of these features into the momentum equation gives the much expected variation of the reduction in the growth rate of the mixing layer with convective Mach number as in experiments. This is then a suggested new approach to solve high speed mixing layers. While it can be thought that the principal contributions of the thesis are complete here, an additional segment is presented related to entropy view of the mixing layer. This study that considers the mixing layer with two different species expresses various terms involved in the entropy conservation equation and obtains the contribution of various terms on the entropy change for various Mc. It is first verified that the entropy derived from the conservation equation matches with those calculated from fluid properties, entropy being a state variable. It is shown that irreversible diffusion comes down the most with convective Mach number. Left: This image shows pictorially the flow of source of turbulent stress from the axial to the cross wise turbulent stress. Production (Σ) of turbulence happens mainly in the xx direction, a part of it is carried by the pressure-velocity correlation to the yy direction, which itself has a low production. With increasing Mc, both the production as well as the pressure-velocity correlation decrease. Right: This image shows the growth rate obtained from simulations scaled with the incompressible growth rate, of LES and RANS in the background of experiments (others). As is clear, the growth rate obtained is well within the band of experimental results.
53

Modelo causal para análise probabilística de risco de falhas de motores a jato em situação operacional de fabricação

Pereira, José Cristiano 27 July 2017 (has links)
Submitted by Secretaria Pós de Produção (tpp@vm.uff.br) on 2017-07-27T19:21:56Z No. of bitstreams: 1 D2014 - José Cristiano Pereira.pdf: 9830334 bytes, checksum: d5be51799514c74451d0ca3358d7757b (MD5) / Made available in DSpace on 2017-07-27T19:21:56Z (GMT). No. of bitstreams: 1 D2014 - José Cristiano Pereira.pdf: 9830334 bytes, checksum: d5be51799514c74451d0ca3358d7757b (MD5) / O processo de fabricação de motores a jato é complexo. Perigos e riscos e muitos elementos críticos estão presentes em milhares de atividades necessárias para fabricar um motor. Na investigação realizada nota-se a inexistência de um modelo específico para calcular quantitativamente a probabilidade de falha operacional de um motor à jato. O objetivo da tese foi desenvolver um modelo causal para análise de risco probabilística de falhas de motores a jato em situação operacional de fabricação. O modelo se caracteriza pela aplicação de rede Bayesiana associada à árvore de falha / árvore de evento e elicitação de probabilidades por especialistas para quantificar a probabilidade de falha. Para a concepção da construção do modelo, foi inicialmente desenvolvida uma pesquisa bibliométrica, através da consulta aos principais motores de busca nacionais e internacionais, em periódicos científicos e técnicos, bancos de dissertações/teses e eventos técnicos relacionados ao tema, para estabelecimento dos estado-da-arte e da técnica. Para a estimativa das probabilidades associadas aos cenários de falhas propostos, foi desenvolvido um processo de elicitação de probabilidade a partir da consulta a especialistas e técnicos. Na concepção do modelo foram consideradas três áreas de influência para a confiabilidade do sistema: humana, software e calibração. Como resultado foi desenvolvido o modelo CAPEMO, que é suportado por um aplicativo que utiliza a teoria das probabilidades (Lei de Bayes) para modelar incerteza. A probabilidade de falha estimada ao final da processo de fabricação, antes do motor ser colocado em operação, contribui no processo de tomada de decisão, melhoria da segurança do sistema e redução de riscos de falha do motor em operação / The process of jet engines manufacturing is complex. Hazards and risks and many critical elements are present in the thousands of activities required to manufacture an engine. In the conducted investigation it is observed a lack of a specific model to estimate quantitatively the probability of a jet engine operational failure. The goal of this thesis is to develop a causal model for probabilistic risk analysis of jet engines failure in manufacturing situational operation. The model is characterized by the application of Bayesian Network associated with the fault tree and event tree to quantify the probability of failure. For the establishment of state-of-the-art and technique and for the conception and construction of the model, a bibliometric research was conducted in the main national and international search engines, in the scientific and technical journals, in the database of dissertations/theses and technical events related to the topic. For the estimation of the probabilities associated with the proposed fault scenarios, a process of probability elicitation from technicians and experts was developed. In the design of the model three areas of influence for the reliability of the system were considered: human, software and calibration. As a result CAPEMO model was developed, that is supported by a software application that uses probability theory to model uncertainty. The probability of engine failure estimated at the end of the manufacturing process, before the motor be put into operation, helps in the allocation of resources in the decision-making process and improves system safety reducing the risk of engine failure in operation
54

Identification of Force Coefficients in Two Squeeze Film Dampers with a Central Groove

Seshagiri, Sanjeev 2011 May 1900 (has links)
Squeeze Film Dampers (SFD) provide viscous damping in rotor bearing systems to reduce lateral vibration amplitudes and to isolate mechanical components. Aircraft engine shafts, often supported on roller bearings, operate at high rotational speeds and are susceptible to large amplitude shaft whirl due to rotor imbalance. SFDs aid to reduce such large whirl amplitudes while also eliminating rotor instabilities. he current work quantifies experimentally the forced performance of two parallel squeeze SFDs separated by a central groove. Force coefficients are identified in a specialized SFD test rig constructed to undergo similar operating and loading conditions as in jet engines. Of interest is to quantify the effect of a central feed groove on the forced performance of SFDs and to validate predictions from a computational tool. The test rig comprises of an elastically supported bearing structure and one of two journals. Tests are conducted on two open ends SFDs, both with diameter D and nominal radial clearance c; each damper with two parallel film land lengths L= 1/5 D and 2L, separated by a feed groove of width L and depth 3/4 L. ISO VG 2 grade lubricant oil flows into the central groove via 3 orifices, 120 degrees apart, and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various static off center positions with respect to the stationary journal, and electromagnetic shakers (2,200 N) excite the test system with single frequency loads over a frequency range to generate rectilinear, circular and elliptical orbits with specified motion amplitudes. A frequency domain method identifies the SFD mechanical parameters, viz., stiffness, damping, and added mass coefficients. The long damper generates 7 times more direct damping and 2 times more added mass compared to the short length damper. The damping coefficients are sensitive to the static eccentricity (up to 50 percent c) while showing lesser dependency on the amplitude of whirl motion (up to 20 percent c). On the other hand, added mass coefficients are nearly constant with static eccentricity and decrease with higher amplitudes of motion. The magnitudes of identified cross-coupled coefficients are insignificant for all imposed operating conditions for either damper. Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the film lands by merely acting as a source of lubricant, but contributes to the generation of large added mass coefficients. The recorded dynamic pressures in the film lands and central groove do not evidence lubricant vapor or gas cavitation for the tested static eccentricities and amplitudes of motion. The direct damping coefficients for both dampers are independent of excitation frequency over the frequency range of the tests. Predictions derived from a novel SFD computational tool that includes flow interactions in the central groove and oil supply orifices agree well with the experimental force coefficients for both dampers. The current work advances the state of the art in SFDs for jet engines.
55

Turbulent Jet Diffusion Flame : Studies On Lliftoff, Stabilization And Autoignition

Patwardhan, Saurabh Sudhir 07 1900 (has links)
This thesis is concerned with investigations on two related issues of turbulent jet diffusion flame, namely (a) stabilization at liftoff and (b) autoignition in a turbulent jet diffusion flame. The approach of Conditional Moment Closure (CMC) has been taken. Fully elliptic first order CMC equations are solved with detailed chemistry to simulate lifted H2/N2 flame in vitiated coflow. The same approach is further used to simulate transient autoignition process in inhomogeneous mixing layers. In Chapter 1, difficulties involved in numerical simulation of turbulent combustion problems are explained. Different numerical tools used to simulate turbulent combustion are briefly discussed. Previous experimental, theoretical and numerical studies of lifted jet diffusion flames and autoignition are reviewed. Various research issues related to objectives of the thesis are discussed. In Chapter 2, the first order CMC transport equations for the reacting flows are presented. Various closure models that are required for solving the governing equations are given. Calculation of mean reaction rate term for detailed chemistry is given with special focus on the reaction rates for pressure dependent reactions. In Chapter 3, starting with the laminar flow code, further extension is carried to include kε turbulence model and PDF model. The code is validated at each stage of inclusion of different model. In this chapter, the code is first validated for the test problem of constant density, 2D, axisymmetric turbulent jet. Further, validation of PDF model is carried out by simulating the problem of nonreacting jet of cold air issuing into a vitiated coflow. The results are compared with the published data from experiments as well as numerical simulations. It is shown that the results compare well with the data. In Chapter 4, numerical results of lifted jet diffusion flame are presented. Detailed chemistry is modelled using Mueller mechanism for H2/O2 system with 9 species and 21 reversible reactions. Simulations are carried out for different jet velocities and coflow stream temperatures. The predicted liftoff generally agrees with experimental data, as well as joint PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for different coflow temperatures reveal that (1) Inside the flamezone, the chemical term balances the molecular diffusion term, and hence the structure is of a diffusion flamelet for both cases. (2) In the preflame zone, the structure depends on the coflow temperature: for low coflow temperatures, the chemical term being small, the advective term balances the axial diffusion term. However, for the high coflow temperature case, the chemical term is large and balances the advective term, the axial diffusion term being small. It is concluded that, liftoff is controlled (a) by turbulent premixed flame propagation for low cofflow temperature while (b) by autoignition for high coflow temperature. In Chapter 5, the numerical results of autoignition in inhomogeneous mixing layer are presented. The configuration consists of a fuel jet issued into hot air for which transient simulations are performed. It is found that the constants assumed in various modelling terms can severely influence the results, particularly the flame temperature. Hence, modifications to these constants are suggested to obtain improved predictions. Preliminary work is carried out to predict autoignition lengths (which may be defined by Tign × Ujet incase of jet- and coflowvelocities being equal) by varying the coflow temperature. The autoignition lengths show a reasonable agreement with the experimental data and LES results. In Chapter 6, main conclusions of this thesis are summarized. Possible future studies on this problem are suggested.
56

Investigation Of Ramp/Cowl Shock Interaction Processes Near A Generic Scramjet Inlet At Hypersonic Mach Number

Mahapatra, Debabrata 09 1900 (has links)
One of the major technological innovations that are necessary for faster and cheaper access-to-space will be the commercial realization of supersonic combustion jet engines (SCRAMJET). The establishment of the flow through the inlet is one the prime requirement for the success of a SCRAMJET engine. The flow through a SCRAMJET inlet is dominated by inviscid /viscous coupling, transition, shock-shock interaction, shock boundary layer interaction, blunt leading edge effects and flow profile effects. Although the literature is exhaustive on various aspects of flow features associated with SCRAMJET engines, very little is known on the fundamental gasdynamic features dictating the flow establishment in the SCRAMJET inlet. On one hand we need the reduction of flight Mach number to manageable supersonic values inside the SCRAMJET combustor, but on the other hand we have to achieve this with minimum total pressure loss. Hence the dynamics of ramp/cowl shock interaction process ahead of the inlet has a direct bearing on the quality and type of flow inside the SCRAMJET engine. There is virtually no data base in the open literature focusing specifically on the cowl/ramp shock interactions at hypersonic Mach numbers. Hence in this backdrop, the main aim of the present investigation is to systematically understand the ramp/cowl shock interaction processes in front of a generic inlet model. Since we are primarily concerned with the shock interaction process ahead of the cowl all the investigations are carried out without any fuel injection. Variable geometry is necessary if we want to operate the inlet for a wide range of Mach numbers in actual flight. The investigation mainly comprises of three variable geometry configurations; namely, variation of contraction ratios at 00 cowl (CR 8.4, 5.0 and 4.3), variation of cowl length for a given chamber height (four lengths of cowls at 10 mm chamber height) and variation of cowl angle (three angles cowl each for two chamber heights). The change in cowl configuration results in different ramp/cowl shock interaction processes affecting the performance of the inlet. Experiments are performed in IISc hypersonic shock tunnel HST 2 (test time ~ 1 ms) at two nominal Mach numbers 8.0 and 5.74 for design and off-design testing conditions. Exhaustive numerical simulations are also performed to compliment the experiments. Further the effect of concentrated energy deposition on forebody /cowl shock interactions has also been investigated. A 2D, planar, single ramp scramjet inlet model has been designed and fabricated along with various cowl geometries and tested in a hypersonic shock tunnel to characterize the forebody/cowl shock interaction process for different inlet configurations. Further a DC plasma power unit and a plasma torch have been designed, developed and fabricated to serve as energy source for conducting flow-alteration experiments in the inlet model. The V-I characteristics of the plasma torch is studied and an estimation of plasma temperature is also performed as a part of characterizing the plasma flame. Initial standardization experiments of blunt body flow field alteration using the plasma torch and hence its drag reduction, are performed to check the torch’s suitability to be used as a flow-altering device in a shock tunnel. The plasma torch is integrated successfully with the inlet model in a shock tunnel to perform experiments with plasma jet as the energy source. The above experiments are first of its kind to be conducted in a shock tunnel. They are performed at various pressure ratios and supply currents. Time resolved schlieren flow visualization using Phantom 7.1 (Ms Vision Research USA) high speed camera, surface static pressure measurements inside a generic inlet using miniature kulite transducer and surface convective heat transfer rate measurements inside a generic inlet using platinum thin film sensors deposited on Macor substrate are some of the shock tunnel flow diagnostics that have been used in this study. Some of the important conclusions from the study are: • Experiments performed at different contraction ratios show different shock patterns. At CR 8.4, the SOL condition is satisfied, but the flow gets choked due to over contraction and flow through inlet is not established. For CR 5.0, formation of a small Mach stem before the chamber is observed with the reflection point on the cowl and the weak reflected shock entering inside the chamber. The Mach stem grows with time. For CR 4.3, the forebody/cowl shock interference created an Edney’s Type II shock interaction pattern. However, at off-design conditions, for CR 5 the shock reflection is regular and at CR 4.3, the Edney’s Type II pattern lasts for a short time. • For all lengths of cowl tested, 131mm and 141mm showed Edney’s Type II shock interference where as 151mm showed Edney’s Type I pattern at design condition. In all cases the flow is choked for high contraction ratio. At off-design condition these shock patterns do not last for the entire test time but rather it becomes a lambda pattern with the normal shock before the inlet. • For inlet configurations with cowl angle other than 00, the flow is found to be established for all cases at designed condition and except for 100 cowl at off-design condition. • For CR 8.4 the peak value of pressure (~1.7x104 Pa) occurs at a location of 151mm, where as for CR 5.0 and 4.3 they occur at 188mm and 206mm having values ~1.6x104 Pa and ~1.4x104 Pa respectively. These locations indicate the likely locations of shock impingements inside the chamber. • For cowl angle of 00 for a 10 mm chamber the maximum pressure value recorded is ~1.7x104 Pa whereas for 100 and 200 cowl it is ~1.1x104 Pa and 1.2 x104 Pa respectively. This is because in the first case the inlet is choked because of over contraction whereas in the other two cases the CR is less and flow is established inside the inlet. • The average heat transfer rates of last four heat transfer gauges (180 mm, 190 mm, 200 mm and 210 mm from the forebody tip) for all lengths of cowls tested are found to be almost same (~ 20 W/cm2). This is because the flow is choked in all these cases. The numerical simulation also shows uniform distribution here, consistent with the experimental findings. • The locations of heat transfer peaks for 100 cowl at design condition can be observed to be occurring at 170 mm and 200 mm from the forebody tip having values ~44 W/cm2 and ~39 W/cm2 respectively. For a 200 cowl they seem to be occurring at 170 mm and 180 mm from the forebody tip having values ~50 W/cm2 and ~30 W/cm2. These locations indicate the likely locations of shock impingements inside the chamber. With the evolution of concept of upstream fuel injection in recent times these may the most appropriate locations for fuel injection. • At higher jet pressure ratios the plasma jet/ramp shock interaction results in a lambda shock pattern with the triple point forming vertically above the cowl level. This means the normal shock stands in front of the inlet making a part of the flow entering the inlet subsonic. The reflected shock from the triple point also separates the ramp boundary layer. • At lower jet pressure ratios the triple point is formed below the cowl level and the flow entering inside the inlet is supersonic. The reflected shock interacts with the cowl shock and a weak separation shock is seen. • Experiments are performed with concentrated DC electric discharge as energy source. Even though the amount of energy dumped here is less than 0.25% of the total energy it creates a perceptible disturbance in the flow. • Experiments are also performed to see the effect of electric discharge as energy source on height of Mach stem for a given inlet configuration. Deposition of energy in the present location does not seem to alter the Mach stem height. However more experiments need to be performed by varying the energy location to see its effect. Non-intrusive energy sources like microwave and lasers can be thought of as options for depositing energy to study its effect on Mach stem height. Since they provide more flexibility on varying the location of energy the optimum location of energy can be found out for highest reduction of Mach stem height.
57

Calculation of the actual cost of engine maintenance

Ezik, Oguz. January 2003 (has links)
Thesis (M.S.)--Air Force Institute of Technology, 2003. / Title from title screen (viewed July 1, 2004). "March 2003." Vita. "AFIT/GOR/ENS/03-06." "ADA412960"--URL. Includes bibliographical references (p. 87-90). Also issued in paper format.

Page generated in 0.0589 seconds