41 |
Ein generisches Abbildungsmodell für Stereokamerasysteme / Modellierung, Kalibrierung, Evaluierung und AnwendungLuber, Andreas 19 January 2015 (has links)
In den letzten Jahren kommen immer mehr nicht perspektivische Kamerasysteme beim maschinellen Sehen zur Anwendung, die vor allem ein deutlich erweitertes Blickfeld bieten. Das klassische perspektivische Abbildungsmodell lässt sich hier häufig nicht mehr erfolgreich anwenden. In dieser Arbeit wird ein generisches Abbildungsmodell vorgestellt, welches übliche Kamerasysteme akkurat modellieren kann. Solche Kamerasysteme schließen insbesondere klassische perspektivische Systeme, aber auch Fischaugen- und Spiegellinsen-Kamerasysteme ein. Die Nutzung eines einheitlichen Abbildungsmodells ermöglicht schließlich eine einfache Verwendung und Kalibrierung von heterogenen Stereokamerasystemen, also einer Kombination von unterschiedlichen Kameratypen, die vorteilhafte Eigenschaften gegenüber klassischen Stereosystemen bieten. Nicht zuletzt trägt die in dieser Arbeit vorgestellte einheitliche Modellierung und Kalibrierung von Mono- und Stereokamerasystemen dazu bei, Fehler durch falschen Umgang oder falsche Wahl von Methoden der Modellierung oder Kalibrierung zu vermeiden und den Kamerakalibrierprozess insgesamt zu vereinfachen. In dieser Arbeit wurden verschiedene Ansätze der Modellierung untersucht und evaluiert. Es wurde eine generische Modellierung vorgeschlagen, die die untersuchten spezifischen Abbildungsmodelle vollständig ersetzen kann. Für die Kalibrierung nicht linearer Abbildungsmodelle wurde eine einheitliche Methode zur Startwertbestimmung vorgeschlagen und evaluiert. Die Genauigkeit der Kalibrierung mittels einheitlicher Methoden wurde anhand diverser realer Kamerasysteme untersucht und bewertet. Es konnte gezeigt werden, dass die dabei auftretenden Fehler deutlich im Subpixelbereich liegen. Durch Erweiterung des klassischen Konzepts der Epipolargeometrie um die generische Abbildungsmodellierung konnten schließlich heterogene Stereokamerasysteme kalibriert und genaue Stereomodelle abgeleitet werden. / The application of perspective camera systems in photogrammetry and computer vision is state of the art. In recent years non-perspective and especially omnidirectional camera systems have increasingly been used in close-range photogrammetry tasks. In general, the perspective camera model, i.e. pinhole model, cannot be applied when using non-perspective camera systems. However, several camera models for different omnidirectional camera systems are proposed in literature. Using different types of cameras in a heterogeneous camera system may lead to an advantageous combination. The advantages of different camera systems, e.g. field of view and resolution, result in a new enhanced camera system. If these different kinds of cameras can be modeled, using a unified camera model, the total calibration process can be simplified. Sometimes it is not possible to give the specific camera model in advance. In these cases a generic approach is helpful too. Furthermore, a simple stereo reconstruction becomes possible when using a fisheye and a perspective camera for example. In this work camera models for perspective, wide-angle and omnidirectional camera systems were evaluated. A generic camera model were introduced that fully substitutes specific camera models. The crucial initialization of the model''s parameters is conducted using a new generic method that is independent of the particular camera system. The accuracy of this generic camera calibration approach is validated by the calibration of a dozen of real camera systems up to subpixel accuracy. Finally, it has been shown that a unified method of modeling, parameter approximation and calibration of interior and exterior orientation can be applied to a generic stereo system to derive precise 3D object data.
|
42 |
Smooth Central and Non-Central Camera Models in Object SpaceRueß, Dominik 24 January 2024 (has links)
In den letzten Jahren sind immer mehr erschwingliche Kamera-Sensoren mit einer zunehmenden Vielfalt optischer Abbildungsfunktionen verfügbar geworden. Low-Cost-Optiken können aufgrund höherer Toleranzen und unterschiedlicher optischer Materialien von der gewünschten Lochkamera Metrik abweichen. Weitwinkel- und Fischaugenobjektive, verzerrende katadioptrische Objektive (spiegelnd und refraktiv) und andere ungewöhnliche Objektive weichen von der Annahme des Modells einer Lochkamera mit einer Brennweite ab.
Actionkameras können die gesamte Umgebung mit zwei Objektiven abbilden, diese entsprechen meist nicht mehr dem Lochkameramodell. Kameras werden auch für Messaufgaben hinter zusätzlichen optischen Elementen eingesetzt.
Die vorliegende Arbeit erweitert die ersten Erkenntnisse im Bereich der differenzierbaren (glatten) Kameramodelle ohne Einschränkungen. Viele existierende Modelle sind auf bestimmte Objektivtypen spezialisiert. In dieser Arbeit werden mehrere solcher allgemeinen Modelle eingeführt, ohne dass eine global feste Brennweite und spezielle Anforderungen an die Symmetrie der Abbildung erforderlich sind.
Eine Einführung alternativer Fehlermetriken im Objektraum bringt auch enorme Rechenvorteile, da eine Abbildungsrichtung analytisch berechnet und viele der Berechnungsergebnisse konstant gehalten werden können.
Zur Initialisierung solcher Modelle wird in dieser Arbeit eine generische lineare Kamera vorgestellt. Das wesentliche Merkmal dabei ist eine künstliche Transformation in höhere Dimensionen, welche mit linearen Verfahren weiterverwendet werden. Sie modellieren bereits nichtlineare Verzerrungen und Asymmetrien. Eine Multikamera-Kalibrierungssoftware wird ebenfalls beschrieben und implementiert.
Das Ergebnis der Arbeit ist ein theoretischer Rahmen für glatte Kameramodelle im Objektraum selbst – anstelle der Abbildung in den Bildraum – mit mehreren konkreten Modellvorschlägen, Implementierungen und dem angepassten und erweiterten Kalibrierungsprozess. / In recent years, more and more affordable camera sensors with an increasing variety of optical imaging features have become available. Low-cost optics may deviate from the desired pinhole metric due to higher tolerances and different optical materials. Wide-angle and fisheye lenses, distorting catadioptric lenses (specular and refractive) and other unusual lenses deviate from the single focal pinhole camera model assumption, which is sometimes intentional.
Action cameras can map the entire environment using two lenses, these usually no longer correspond to the pinhole camera model. Cameras are also used for measuring tasks behind additional optical elements – with unforeseeable deviations in the line of sight.
The present work expands the first findings in the field of differentiable (smooth) camera models without constraints. Many existing models specialise in certain types of lenses. In this work, several such general models are introduced without requiring fixed global focal length and symmetry requirements.
An introduction of alternative error metrics in the object space also gives enormous computational advantages, since one imaging direction can be calculated analytically and many of the calculation results can be kept constant.
For the generation of meaningful starting values of such models, this work introduces a generic linear camera. The essential feature of is an artificial transformation into higher dimensions. These transformed coordinates can then continue to be used with linear methods. They already model non-linear distortions and asymmetries. A multi-camera calibration software that efficiently implements these models is also described and implemented.
The result of the work is a theoretical framework for smooth camera models in the object space itself - instead of the established mapping into the image space - with several concrete model proposals, implementations and the adapted and extended calibration process.
|
43 |
Calibration of Standard StarsBastian-Querner, Benjamin 11 December 2024 (has links)
Die Messung der dunklen Energie Ω(Λ) und des equation-of-state Parameters 𝑤 spielen in der Kosmologie eine entscheidende Rolle. Das Hubble-Diagramm einer Supernova vom Typ Ia (SNe-Ia) gibt Aufschluss über diese Parameter. Die Supernova-Kosmologie vergleicht die Lichtkurven von SNe-Ia bei verschiedenen Rotverschiebungen und Filterbändern. Die Genauigkeit der oben genannten Parameter hängt von der Genauigkeit der derzeit verfügbaren spektrophotometrischen Standards ab. Dies erfordert Fortschritte bei der Verbesserung der Verbindung zwischen den derzeitigen astrophysikalischen Flussstandards und den in den Labors etablierten Standards. CALSPEC ist ein stellares Standardnetzwerk mit einer internen Konsistenz von 0,5 %, das häufig mit STIS am Hubble-Weltraumteleskop validiert wird. Neue Instrumente wie das Vera C. Rubin-Observatorium erfordern Flusskalibrierungsunsicherheiten in der Größenordnung von 0,1 %. SCALA zielt darauf ab, die Kalibrierung des NIST-Laborstandards mit Unsicherheiten, die von den NIST-Kalibrierungsunsicherheiten dominiert werden, auf CALSPEC zu übertragen. SCALA verwendet zwei sequentielle Monochromatoren zur gleichzeitigen Beleuchtung des SNIFS+Teleskopsystems. Zwanzig Photosensoren wurden kalibriert für den Bereich zwischen 3000Å und 10 000 Å, und SCALA wurde im Juni 2022 mit den vorgeschlagenen Verbesserungen aufgerüstet. Nach Abschluss der Aufrüstung wurden in vier Nächten zwischen dem 19. und 22. Juni 2022 Standardsterne aus dem von der Supernova Factory verwendeten Standardsternnetz beobachtet. Tagsüber wurde SNIFS anhand der zuvor kalibrierten Fotosensoren kalibriert, so dass die Kalibrierung auf den NIST-Laborstandard zurückgeführt werden konnte.
Es zeigte sich, dass der Kalibrierungstransfer von SCALA in der Größenordnung von 0,1 % zum gesamten Unsicherheitsbudget beiträgt. Eine Anpassung der SNIFS-Analysepipeline wird den Vergleich mit CALSPEC mit Unsicherheiten von weniger als 0,5 % ermöglichen. / The measurement of dark energy Ω(Λ) and its equation of state parameter 𝑤 plays a vital role in cosmology. The Hubble diagram of a Type Ia supernova (SNe-Ia) constrains these parameters. Supernova cosmology compares the light curves of SNe-Ia at different redshifts and filter bands. The accuracy of the above parameters depends on the accuracy of currently available spectrophotometric standards. This requires advances to improve the connection between current astrophysical flux standards and those established in laboratories. CALSPEC is a standard stellar network with an internal consistency of 0.5%, frequently validated with STIS at the Hubble Space Telescope. New instruments such as the Vera C. Rubin Observatory require flux calibration uncertainties of the order of 0.1%. SCALA aims to transfer the calibration of the NIST laboratory standard with uncertainties dominated by the NIST calibration uncertainties to CALSPEC. SCALA uses two sequential monochromators to simultaneously illuminate the SNIFS + telescope system and the calibrated photodiodes with traceable calibration for the range between 3000Å to 10 000 Å. Twenty photosensors were calibrated, and SCALA was upgraded with the proposed improvements in June 2022. At the end of the upgrade, standard stars from the standard star network used by the Supernova Factory were observed for four nights between June 19 and 22, 2022. During the day, SNIFS was calibrated against the previously calibrated photosensors, allowing the calibration to be traced back to the NIST laboratory standard.
It was shown that the calibration transfer from SCALA contributes in the order of 0.1%to the total uncertainty budget. An adjustment of the SNIFS analysis pipeline will allow comparison with CALSPEC with uncertainties less than 0.5%.
|
44 |
Polyphenolanalyse in gartenbaulichen Produkten auf der Basis laser-induzierter FluoreszenzspektroskopieWulf, Janina Saskia 11 April 2007 (has links)
In der gartenbaulichen Forschung gewinnen zerstörungsfreie Produktmonitoringverfahren im Hinblick auf ein verbessertes Prozessmanagement an Bedeutung. Optische Methoden werden bereits in mobilen Systemen und Sortieranlagen zur Produktbewertung in Nachernteprozessen eingesetzt. In der vorliegenden Arbeit wurde ein Beitrag zur quantitativen Bestimmung ernährungsphysiologisch bedeutender Fruchtpolyphenole auf der Basis laser-induzierter Fluoreszenzspektroskopie geleistet. An gelagerten Äpfeln und Möhren wurde die Varianz der Produktfluoreszenz bei verschiedenen Lagerbedingungen mit Hilfe der Hauptkomponentenanalyse ausgewertet, um die Produktentwicklung zerstörungsfrei aufzuzeigen. Für eine angepasste Methode der Datenauswertung wurden hierbei verschiedene Signalvorverarbeitungsmethoden getestet. Die quantitative Bestimmung einzelner Inhaltsstoffe wird in der komplexen pflanzlichen Matrix sowohl beeinflusst durch die Fluoreszenzquantenausbeute als auch Reabsorptions- und Löschungseffekten. Aufbauend auf Untersuchungen an Phenolstandards, Fruchtextrakten und geschnittenem Fruchtgewebe zu Einflussparametern und fluoreszenzspektrokopisch messbaren Konzentrationsbereichen wurden neuere Datenvorverarbeitungsmethoden zur Korrektur angewendet. Kalibriermodelle wurden auf der Basis der fluorimetrisch und chromatographisch ermittelten Werte von Hydroxyzimtsäurederivaten bei Apfel und Erdbeere erarbeitetet und hinsichtlich der Messungenauigkeit in der Kalibrierung und Kreuzvalidierung verglichen. Aufgrund der hohen Variabilität gartenbaulicher Produkte wurden diese Modelle auf einem unabhängigen Datensatz getestet. Mit Hilfe mathematischer orthogonaler Signalkorrektur konnte die für den Polyphenolgehalt nicht relevante Varianz aus den spektralen Daten entfernt und verringerte Kalibrierungs- und Validierungsfehler erzielt werden. Der in der Fluoreszenzanalyse übliche empirische Ansatz mit reflexionskorrigierten Fluoreszenzspektren zu arbeiten führten hingegen zu keiner Fehlerverminderung. / During recent years several research groups focussed on the development of non-destructive product monitoring methods to improve the process management for horticultural products in the entire supply chain. Optical methods have been applied for fruit monitoring in production and postharvest processes using mobile measuring systems or NIR sorting lines. The aim of the present study was to quantitatively determine health promoting native fruit polyphenols by means of laser-induced fluorescence spectroscopy. The variance in the fluorescence signal was detected on apples and carrots stored under different conditions. With the help of principal component analysis the fluorescence spectra were evaluated to visualize senescence effects during storage. Different data pre-processing methods were tested for a descriptive factor analysis regarding the wavelength-dependent intensities as variables. However, in a complex fruit matrix the quantitative determination of fruit compounds is influenced by its fluorescence quantum yield as well as reabsorption and quenching effects. The influence of side-effects was studied in phenol standards, fruit extracts and sliced fruit tissue and spectral data was corrected using new data pre-processing methods.. Calibration models for the polyphenol analyses were built on the fruit fluorescence spectra (apples, strawberries) using the chromatographically analysis of hydroxycinnamic acids as a reference. The uncertainty of the models was evaluated by their root mean squares errors of calibration and cross-validation. The feasibility of the non-destructive analysis in practice is influenced by the high variability of horticultural products. Therefore, the models were validated on an independent test set. The mathematical data pre-processing method of direct orthogonal signal correction removed the non relevant information in the spectral data and resulted in the lowest errors. In comparison, the often applied empirical approach in fluorescence spectroscopy to correct with simultaneously recorded reflectance spectra did not improve the calibration models.
|
45 |
Kalibrierverfahren und optimierte Bildverarbeitung für Multiprojektorsysteme / Calibration methods and optimized image processing for multi-projector display systemsHeinz, Marcel 28 November 2013 (has links) (PDF)
Gegenstand der vorliegenden Dissertation ist die Entwicklung von Kalibrierverfahren und Algorithmen zur Bildverarbeitung im Kontext von Multiprojektorsystemen mit dem Ziel, die Einsatzmöglichkeiten von derartigen Anlagen zu erweitern und die Nutzerakzeptanz solcher Systeme zu steigern. Die Arbeit konzentriert sich dabei insbesondere auf (annähernd) planare Mehrsegment-Projektionsanlagen, die aus preisgünstigen, nicht speziell für den Visualisierungbereich konzipierten Consumer- und Office-Projektoren aufgebaut werden.
Im ersten Teil der Arbeit werden bestehende Verfahren zur geometrischen Kalibrierung, zum Edge-Blending sowie zur Helligkeits- und Farbanpassung auf ihre Eignung im Hinblick auf die Anforderungen untersucht und Erweiterungen entwickelt. Für die kamerabasierte Geometrie- Kalibrierung wird mit Lininenpattern gearbeitet, wobei ein effizienter rekursiver Algorithmus zur Berechnung der Schnittpunkte bei leicht gekrümmten Oberflächen vorgestellt wird. Für das Edge-Blending wird ein generalisiertes Modell entwickelt, das mehrere bestehende Ansätze kombiniert und erweitert. Die vorgenommene Modifikation der Distanzfunktion erlaubt insbesondere die bessere Steuerung des Helligkeitsverlaufs und ermöglicht weichere Übergänge an den Grenzen der Überlappungszonen. Es wird weiterhin gezeigt, dass das Edge-Blending mit bestehenden Ansätzen zum Ausgleich der Helligkeitsunterschiede wie Luminance Attenutation Maps kombiniert werden kann.
Für die photometrische Kalibrierung ist die Kenntnis der Farb-Transferfunktion, also der Abbildung der Eingabe-Farbwerte auf die tatsächlich vom Projektor erzeugten Ausgaben, unerlässlich. Die herkömmlichen Ansätze betrachten dabei vorwiegend RGB-Projektoren, bei denen die dreidimensionale Transferfunktion in drei eindimensionale Funktionen für jeden Farbkanal zerlegt werden kann. Diese Annahme trifft jedoch auf die betrachteten Projektoren meist nicht zu. Insbesondere DLP-Projektoren mit Farbrad verfügen oft über zusätzliche Grundfarben, so dass der Farbraum deutlich von einem idealen RGB-Modell abweicht. In dieser Arbeit wird zunächst ein empirisches Modell einer Transferfunktion vorgestellt, das sich für derartige Projektoren besser eignet, allerdings die Helligkeit der Projektoren nicht vollständig ausnutzt.
Im zweiten Teil der Arbeit wird ein kamerabasiertes Messverfahren entwickelt, mit dem direkt die dreidimensionale Farb-Transferfunktion ermittelt werden kann. Gegenüber bestehenden Verfahren werden tausende von Farbsamples gleichzeitig erfasst, so dass die erreichbare Sampledichte unter praxisrelevanten Messbedingungen von 17x17x17 auf 64x64x64 erhöht und damit die Qualität der photometrischen Kalibrierung signifikant gesteigert werden kann. Weiterhin wird ein Schnellverfahren entwickelt, dass die Messungsdauer bei 17x17x17 Samples von mehreren Stunden mit bisherigen Verfahren auf weniger als 30 Minuten reduziert.
Im dritten Teil werden Algorithmen zur effizienten Bildverarbeitung entwickelt, die der GPU-basierten Anwendung der Kalibrierparameter auf die darzustellenden Bilddaten in Echtzeit dienen. Dabei werden die Möglichkeiten zur Vermeidung redundanter Berechnungsschritte beim Einsatz Stereoskopie-fähiger Projektoren ausgenutzt. Weiterhin wird das eigentliche Kalibrierverfahren effizient mit Verfahren zur Konvertierung von stereoskopischen Bildverfahren kombiniert. Es wird gezeigt, dass ein einzelner PC aus Standardkomponenten zur Ansteuerung einer Mehrsegment-Projektionsanlage mit bis zu 6 Projektoren ausreicht. Die Verwendung von DVI-Capture-Karten ermöglicht dabei den Betrieb einer solchen Anlage wie einen "großen Monitor" für beliebige Applikationen und Betriebssysteme.
|
46 |
Kalibrierverfahren und optimierte Bildverarbeitung für MultiprojektorsystemeHeinz, Marcel 18 November 2013 (has links)
Gegenstand der vorliegenden Dissertation ist die Entwicklung von Kalibrierverfahren und Algorithmen zur Bildverarbeitung im Kontext von Multiprojektorsystemen mit dem Ziel, die Einsatzmöglichkeiten von derartigen Anlagen zu erweitern und die Nutzerakzeptanz solcher Systeme zu steigern. Die Arbeit konzentriert sich dabei insbesondere auf (annähernd) planare Mehrsegment-Projektionsanlagen, die aus preisgünstigen, nicht speziell für den Visualisierungbereich konzipierten Consumer- und Office-Projektoren aufgebaut werden.
Im ersten Teil der Arbeit werden bestehende Verfahren zur geometrischen Kalibrierung, zum Edge-Blending sowie zur Helligkeits- und Farbanpassung auf ihre Eignung im Hinblick auf die Anforderungen untersucht und Erweiterungen entwickelt. Für die kamerabasierte Geometrie- Kalibrierung wird mit Lininenpattern gearbeitet, wobei ein effizienter rekursiver Algorithmus zur Berechnung der Schnittpunkte bei leicht gekrümmten Oberflächen vorgestellt wird. Für das Edge-Blending wird ein generalisiertes Modell entwickelt, das mehrere bestehende Ansätze kombiniert und erweitert. Die vorgenommene Modifikation der Distanzfunktion erlaubt insbesondere die bessere Steuerung des Helligkeitsverlaufs und ermöglicht weichere Übergänge an den Grenzen der Überlappungszonen. Es wird weiterhin gezeigt, dass das Edge-Blending mit bestehenden Ansätzen zum Ausgleich der Helligkeitsunterschiede wie Luminance Attenutation Maps kombiniert werden kann.
Für die photometrische Kalibrierung ist die Kenntnis der Farb-Transferfunktion, also der Abbildung der Eingabe-Farbwerte auf die tatsächlich vom Projektor erzeugten Ausgaben, unerlässlich. Die herkömmlichen Ansätze betrachten dabei vorwiegend RGB-Projektoren, bei denen die dreidimensionale Transferfunktion in drei eindimensionale Funktionen für jeden Farbkanal zerlegt werden kann. Diese Annahme trifft jedoch auf die betrachteten Projektoren meist nicht zu. Insbesondere DLP-Projektoren mit Farbrad verfügen oft über zusätzliche Grundfarben, so dass der Farbraum deutlich von einem idealen RGB-Modell abweicht. In dieser Arbeit wird zunächst ein empirisches Modell einer Transferfunktion vorgestellt, das sich für derartige Projektoren besser eignet, allerdings die Helligkeit der Projektoren nicht vollständig ausnutzt.
Im zweiten Teil der Arbeit wird ein kamerabasiertes Messverfahren entwickelt, mit dem direkt die dreidimensionale Farb-Transferfunktion ermittelt werden kann. Gegenüber bestehenden Verfahren werden tausende von Farbsamples gleichzeitig erfasst, so dass die erreichbare Sampledichte unter praxisrelevanten Messbedingungen von 17x17x17 auf 64x64x64 erhöht und damit die Qualität der photometrischen Kalibrierung signifikant gesteigert werden kann. Weiterhin wird ein Schnellverfahren entwickelt, dass die Messungsdauer bei 17x17x17 Samples von mehreren Stunden mit bisherigen Verfahren auf weniger als 30 Minuten reduziert.
Im dritten Teil werden Algorithmen zur effizienten Bildverarbeitung entwickelt, die der GPU-basierten Anwendung der Kalibrierparameter auf die darzustellenden Bilddaten in Echtzeit dienen. Dabei werden die Möglichkeiten zur Vermeidung redundanter Berechnungsschritte beim Einsatz Stereoskopie-fähiger Projektoren ausgenutzt. Weiterhin wird das eigentliche Kalibrierverfahren effizient mit Verfahren zur Konvertierung von stereoskopischen Bildverfahren kombiniert. Es wird gezeigt, dass ein einzelner PC aus Standardkomponenten zur Ansteuerung einer Mehrsegment-Projektionsanlage mit bis zu 6 Projektoren ausreicht. Die Verwendung von DVI-Capture-Karten ermöglicht dabei den Betrieb einer solchen Anlage wie einen "großen Monitor" für beliebige Applikationen und Betriebssysteme.
|
47 |
Compositional depth profiling of diamond-like carbon layers by glow discharge optical emission spectroscopySchubert, C., Hoffmann, V., Kümmel, A., Sinn, J., Härtel, M., Reuther, A., Thomalla, M., Gemming, T., Eckert, J., Leyens, C. 07 January 2020 (has links)
This article describes the compositional depth profiling (CDP) of diamond-like carbon (DLC) layers by Glow Discharge-Optical Emission Spectrometry (GD-OES). The DLC layers were deposited on flat steel samples. Analysis by using a Charge Coupled Device (CCD) GD-OES instrument revealed saturation effects of the carbon lines at 156 nm and 165 nm. Therefore, the application of these lines for CDP of DLC layers is not possible. A third line at 193 nm was not affected by this saturation effect and is therefore a good choice for calibration. A second effect was observed as a non-flat crater in combination with large differences of the sputtering rate factor of the substrate (1.1) and the DLC (0.032) led to an unusual behaviour at the interface between the DLC layer and substrate. Both measurements of the crater shape and of the sputtered coating weight up to the interface and just behind it showed clearly that about 30% of the DLC layer remains at the crater edge, once the crater centre reaches the interface. This was found to be the main reason for the incorrect DLC-layer thickness, if the intersection between the carbon and iron concentration was used as a measure for the end of the DLC layer.
|
48 |
Alles auf Draht!: MEFORM 2022 : 17.03.-18.03.2022Technische Universität Bergakademie Freiberg 27 April 2022 (has links)
Themenschwerpunkte: Moderne Walzstraßenkonzeptionen für neue Umformtechnologien und TMB-Strategien zur Herstellung von Walzdraht, Rechnergestützte Kalibrierung und Stichplanauslegung, Neue Technologien und Anlagen zum Ziehen von Draht, Anlagen und Technologien zur Wärmebehandlung von Draht, Umformtechnologien für neue Drahtwerkstoffe und Legierungen für Hochleistungsanwendungen, Prozessüberwachung und Qualitätssicherung in Prozessen der Drahtherstellung und -weiterverarbeitung, Mathematische Beschreibung der Umformprozesse und des Werkstoffverhaltens bei der Drahterzeugung und Weiterverarbeitung von Draht zu Anwendungen mit hohem Anforderungsprofil / Conference topics: Modern rolling plant concepts for new forming technologies and thermo-mechanical treatment of rolled wires, Computer-aided roll-pass design and pass schedule development, New technologies and equipments for wire drawing, Systems and technologies for the heat treatment of wire forming technologies for new alloys and materials accounting for high-demand wire applications, Process monitoring and quality assurance in wire production and processing, Mathematical modelling of the deformation process and material behaviour during wire production, Post-processing of wire for high-demand applications, and Wire-based additive manufacturing
|
49 |
A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in EthiopiaBittner, Lucas, De Jonge, Cindy, Gil-Romera, Graciela, Lamb, Henry F., Russell, James M., Zech, Michael 22 February 2024 (has links)
Eastern Africa has experienced strong climatic changes since the last deglaciation (15 000 years ago). The driving mechanisms and teleconnections of these spatially complex climate variations are yet not fully understood. Although previous studies on lake systems have enhanced our knowledge of Holocene precipitation variation in eastern Africa, relatively few studies have reconstructed the terrestrial temperature history of eastern Africa from lake archives. Here, we present (i) a new branched glycerol dialkyl glycerol tetraether (brGDGT) temperature calibration that includes Bale Mountains surface sediments and (ii) a quantitative record of mean annual air temperature (MAT) over the past 12 ka cal BP using brGDGTs in a sediment core collected from Garba Guracha (3950ma.s.l.) in the Bale Mountains. After adding Bale Mountains surface sediment (n = 11) data (Baxter et al., 2019) to the existing East African lake dataset, additional variation in 6-methyl brGDGTs was observed, which necessitated modifying the MBT'5ME calibration (MBT denotes methylation of branched tetraethers) by adding 6-methyl brGDGT IIIa0 (resulting in the MBT Bale Mountains index, r² = 0:93, p < 0:05). Comparing the MBT'5ME and the new MBT Bale Mountains index, our high-altitude Garba Guracha temperature record shows that warming occurred shortly after the Holocene onset when the temperature increased by more than 3.0°C in less than 600 years. The highest temperatures prevailed between 9 and 6 ka cal BP, followed by a temperature decrease until 1.4 ka cal BP. The reconstructed temperature history is linked to supraregional climatic changes associated with insolation forcing and the African Humid Period (AHP), as well as with local anomalies associated with catchment deglaciation and hydrology.
|
50 |
Geometrische und stochastische Modelle zur Verarbeitung von 3D-Kameradaten am Beispiel menschlicher Bewegungsanalysen / Geometric and stochastic models for the processing of 3D camera data within the context of human motion analysesWestfeld, Patrick 15 June 2012 (has links) (PDF)
Die dreidimensionale Erfassung der Form und Lage eines beliebigen Objekts durch die flexiblen Methoden und Verfahren der Photogrammetrie spielt für ein breites Spektrum technisch-industrieller und naturwissenschaftlicher Einsatzgebiete eine große Rolle. Die Anwendungsmöglichkeiten reichen von Messaufgaben im Automobil-, Maschinen- und Schiffbau über die Erstellung komplexer 3D-Modelle in Architektur, Archäologie und Denkmalpflege bis hin zu Bewegungsanalysen in Bereichen der Strömungsmesstechnik, Ballistik oder Medizin. In der Nahbereichsphotogrammetrie werden dabei verschiedene optische 3D-Messsysteme verwendet. Neben flächenhaften Halbleiterkameras im Einzel- oder Mehrbildverband kommen aktive Triangulationsverfahren zur Oberflächenmessung mit z.B. strukturiertem Licht oder Laserscanner-Systeme zum Einsatz.
3D-Kameras auf der Basis von Photomischdetektoren oder vergleichbaren Prinzipien erzeugen durch die Anwendung von Modulationstechniken zusätzlich zu einem Grauwertbild simultan ein Entfernungsbild. Als Einzelbildsensoren liefern sie ohne die Notwendigkeit einer stereoskopischen Zuordnung räumlich aufgelöste Oberflächendaten in Videorate. In der 3D-Bewegungsanalyse ergeben sich bezüglich der Komplexität und des Rechenaufwands erhebliche Erleichterungen. 3D-Kameras verbinden die Handlichkeit einer Digitalkamera mit dem Potential der dreidimensionalen Datenakquisition etablierter Oberflächenmesssysteme. Sie stellen trotz der noch vergleichsweise geringen räumlichen Auflösung als monosensorielles System zur Echtzeit-Tiefenbildakquisition eine interessante Alternative für Aufgabenstellungen der 3D-Bewegungsanalyse dar.
Der Einsatz einer 3D-Kamera als Messinstrument verlangt die Modellierung von Abweichungen zum idealen Abbildungsmodell; die Verarbeitung der erzeugten 3D-Kameradaten bedingt die zielgerichtete Adaption, Weiter- und Neuentwicklung von Verfahren der Computer Vision und Photogrammetrie. Am Beispiel der Untersuchung des zwischenmenschlichen Bewegungsverhaltens sind folglich die Entwicklung von Verfahren zur Sensorkalibrierung und zur 3D-Bewegungsanalyse die Schwerpunkte der Dissertation. Eine 3D-Kamera stellt aufgrund ihres inhärenten Designs und Messprinzips gleichzeitig Amplituden- und Entfernungsinformationen zur Verfügung, welche aus einem Messsignal rekonstruiert werden. Die simultane Einbeziehung aller 3D-Kamerainformationen in jeweils einen integrierten Ansatz ist eine logische Konsequenz und steht im Vordergrund der Verfahrensentwicklungen. Zum einen stützen sich die komplementären Eigenschaften der Beobachtungen durch die Herstellung des funktionalen Zusammenhangs der Messkanäle gegenseitig, wodurch Genauigkeits- und Zuverlässigkeitssteigerungen zu erwarten sind. Zum anderen gewährleistet das um eine Varianzkomponentenschätzung erweiterte stochastische Modell eine vollständige Ausnutzung des heterogenen Informationshaushalts.
Die entwickelte integrierte Bündelblockausgleichung ermöglicht die Bestimmung der exakten 3D-Kamerageometrie sowie die Schätzung der distanzmessspezifischen Korrekturparameter zur Modellierung linearer, zyklischer und signalwegeffektbedingter Fehleranteile einer 3D-Kamerastreckenmessung. Die integrierte Kalibrierroutine gleicht in beiden Informationskanälen gemessene Größen gemeinsam, unter der automatischen Schätzung optimaler Beobachtungsgewichte, aus. Die Methode basiert auf dem flexiblen Prinzip einer Selbstkalibrierung und benötigt keine Objektrauminformation, wodurch insbesondere die aufwendige Ermittlung von Referenzstrecken übergeordneter Genauigkeit entfällt. Die durchgeführten Genauigkeitsuntersuchungen bestätigen die Richtigkeit der aufgestellten funktionalen Zusammenhänge, zeigen aber auch Schwächen aufgrund noch nicht parametrisierter distanzmessspezifischer Fehler. Die Adaptivität und die modulare Implementierung des entwickelten mathematischen Modells gewährleisten aber eine zukünftige Erweiterung. Die Qualität der 3D-Neupunktkoordinaten kann nach einer Kalibrierung mit 5 mm angegeben werden. Für die durch eine Vielzahl von meist simultan auftretenden Rauschquellen beeinflusste Tiefenbildtechnologie ist diese Genauigkeitsangabe sehr vielversprechend, vor allem im Hinblick auf die Entwicklung von auf korrigierten 3D-Kameradaten aufbauenden Auswertealgorithmen.
2,5D Least Squares Tracking (LST) ist eine im Rahmen der Dissertation entwickelte integrierte spatiale und temporale Zuordnungsmethode zur Auswertung von 3D-Kamerabildsequenzen. Der Algorithmus basiert auf der in der Photogrammetrie bekannten Bildzuordnung nach der Methode der kleinsten Quadrate und bildet kleine Oberflächensegmente konsekutiver 3D-Kameradatensätze aufeinander ab. Die Abbildungsvorschrift wurde, aufbauend auf einer 2D-Affintransformation, an die Datenstruktur einer 3D-Kamera angepasst. Die geschlossen formulierte Parametrisierung verknüpft sowohl Grau- als auch Entfernungswerte in einem integrierten Modell. Neben den affinen Parametern zur Erfassung von Translations- und Rotationseffekten, modellieren die Maßstabs- sowie Neigungsparameter perspektivbedingte Größenänderungen des Bildausschnitts, verursacht durch Distanzänderungen in Aufnahmerichtung. Die Eingabedaten sind in einem Vorverarbeitungsschritt mit Hilfe der entwickelten Kalibrierroutine um ihre opto- und distanzmessspezifischen Fehler korrigiert sowie die gemessenen Schrägstrecken auf Horizontaldistanzen reduziert worden. 2,5D-LST liefert als integrierter Ansatz vollständige 3D-Verschiebungsvektoren. Weiterhin können die aus der Fehlerrechnung resultierenden Genauigkeits- und Zuverlässigkeitsangaben als Entscheidungskriterien für die Integration in einer anwendungsspezifischen Verarbeitungskette Verwendung finden. Die Validierung des Verfahrens zeigte, dass die Einführung komplementärer Informationen eine genauere und zuverlässigere Lösung des Korrespondenzproblems bringt, vor allem bei schwierigen Kontrastverhältnissen in einem Kanal. Die Genauigkeit der direkt mit den Distanzkorrekturtermen verknüpften Maßstabs- und Neigungsparameter verbesserte sich deutlich. Darüber hinaus brachte die Erweiterung des geometrischen Modells insbesondere bei der Zuordnung natürlicher, nicht gänzlich ebener Oberflächensegmente signifikante Vorteile.
Die entwickelte flächenbasierte Methode zur Objektzuordnung und Objektverfolgung arbeitet auf der Grundlage berührungslos aufgenommener 3D-Kameradaten. Sie ist somit besonders für Aufgabenstellungen der 3D-Bewegungsanalyse geeignet, die den Mehraufwand einer multiokularen Experimentalanordnung und die Notwendigkeit einer Objektsignalisierung mit Zielmarken vermeiden möchten. Das Potential des 3D-Kamerazuordnungsansatzes wurde an zwei Anwendungsszenarien der menschlichen Verhaltensforschung demonstriert. 2,5D-LST kam zur Bestimmung der interpersonalen Distanz und Körperorientierung im erziehungswissenschaftlichen Untersuchungsgebiet der Konfliktregulation befreundeter Kindespaare ebenso zum Einsatz wie zur Markierung und anschließenden Klassifizierung von Bewegungseinheiten sprachbegleitender Handgesten. Die Implementierung von 2,5D-LST in die vorgeschlagenen Verfahren ermöglichte eine automatische, effektive, objektive sowie zeitlich und räumlich hochaufgelöste Erhebung und Auswertung verhaltensrelevanter Daten.
Die vorliegende Dissertation schlägt die Verwendung einer neuartigen 3D-Tiefenbildkamera zur Erhebung menschlicher Verhaltensdaten vor. Sie präsentiert sowohl ein zur Datenaufbereitung entwickeltes Kalibrierwerkzeug als auch eine Methode zur berührungslosen Bestimmung dichter 3D-Bewegungsvektorfelder. Die Arbeit zeigt, dass die Methoden der Photogrammetrie auch für bewegungsanalytische Aufgabenstellungen auf dem bisher noch wenig erschlossenen Gebiet der Verhaltensforschung wertvolle Ergebnisse liefern können. Damit leistet sie einen Beitrag für die derzeitigen Bestrebungen in der automatisierten videographischen Erhebung von Körperbewegungen in dyadischen Interaktionen. / The three-dimensional documentation of the form and location of any type of object using flexible photogrammetric methods and procedures plays a key role in a wide range of technical-industrial and scientific areas of application. Potential applications include measurement tasks in the automotive, machine building and ship building sectors, the compilation of complex 3D models in the fields of architecture, archaeology and monumental preservation and motion analyses in the fields of flow measurement technology, ballistics and medicine. In the case of close-range photogrammetry a variety of optical 3D measurement systems are used. Area sensor cameras arranged in single or multi-image configurations are used besides active triangulation procedures for surface measurement (e.g. using structured light or laser scanner systems).
The use of modulation techniques enables 3D cameras based on photomix detectors or similar principles to simultaneously produce both a grey value image and a range image. Functioning as single image sensors, they deliver spatially resolved surface data at video rate without the need for stereoscopic image matching. In the case of 3D motion analyses in particular, this leads to considerable reductions in complexity and computing time. 3D cameras combine the practicality of a digital camera with the 3D data acquisition potential of conventional surface measurement systems. Despite the relatively low spatial resolution currently achievable, as a monosensory real-time depth image acquisition system they represent an interesting alternative in the field of 3D motion analysis.
The use of 3D cameras as measuring instruments requires the modelling of deviations from the ideal projection model, and indeed the processing of the 3D camera data generated requires the targeted adaptation, development and further development of procedures in the fields of computer graphics and photogrammetry. This Ph.D. thesis therefore focuses on the development of methods of sensor calibration and 3D motion analysis in the context of investigations into inter-human motion behaviour. As a result of its intrinsic design and measurement principle, a 3D camera simultaneously provides amplitude and range data reconstructed from a measurement signal. The simultaneous integration of all data obtained using a 3D camera into an integrated approach is a logical consequence and represents the focus of current procedural development. On the one hand, the complementary characteristics of the observations made support each other due to the creation of a functional context for the measurement channels, with is to be expected to lead to increases in accuracy and reliability. On the other, the expansion of the stochastic model to include variance component estimation ensures that the heterogeneous information pool is fully exploited.
The integrated bundle adjustment developed facilitates the definition of precise 3D camera geometry and the estimation of range-measurement-specific correction parameters required for the modelling of the linear, cyclical and latency defectives of a distance measurement made using a 3D camera. The integrated calibration routine jointly adjusts appropriate dimensions across both information channels, and also automatically estimates optimum observation weights. The method is based on the same flexible principle used in self-calibration, does not require spatial object data and therefore foregoes the time-consuming determination of reference distances with superior accuracy. The accuracy analyses carried out confirm the correctness of the proposed functional contexts, but nevertheless exhibit weaknesses in the form of non-parameterized range-measurement-specific errors. This notwithstanding, the future expansion of the mathematical model developed is guaranteed due to its adaptivity and modular implementation. The accuracy of a new 3D point coordinate can be set at 5 mm further to calibration. In the case of depth imaging technology – which is influenced by a range of usually simultaneously occurring noise sources – this level of accuracy is very promising, especially in terms of the development of evaluation algorithms based on corrected 3D camera data.
2.5D Least Squares Tracking (LST) is an integrated spatial and temporal matching method developed within the framework of this Ph.D. thesis for the purpose of evaluating 3D camera image sequences. The algorithm is based on the least squares image matching method already established in photogrammetry, and maps small surface segments of consecutive 3D camera data sets on top of one another. The mapping rule has been adapted to the data structure of a 3D camera on the basis of a 2D affine transformation. The closed parameterization combines both grey values and range values in an integrated model. In addition to the affine parameters used to include translation and rotation effects, the scale and inclination parameters model perspective-related deviations caused by distance changes in the line of sight. A pre-processing phase sees the calibration routine developed used to correct optical and distance-related measurement specific errors in input data and measured slope distances reduced to horizontal distances. 2.5D LST is an integrated approach, and therefore delivers fully three-dimensional displacement vectors. In addition, the accuracy and reliability data generated by error calculation can be used as decision criteria for integration into an application-specific processing chain. Process validation showed that the integration of complementary data leads to a more accurate, reliable solution to the correspondence problem, especially in the case of difficult contrast ratios within a channel. The accuracy of scale and inclination parameters directly linked to distance correction terms improved dramatically. In addition, the expansion of the geometric model led to significant benefits, and in particular for the matching of natural, not entirely planar surface segments.
The area-based object matching and object tracking method developed functions on the basis of 3D camera data gathered without object contact. It is therefore particularly suited to 3D motion analysis tasks in which the extra effort involved in multi-ocular experimental settings and the necessity of object signalling using target marks are to be avoided. The potential of the 3D camera matching approach has been demonstrated in two application scenarios in the field of research into human behaviour. As in the case of the use of 2.5D LST to mark and then classify hand gestures accompanying verbal communication, the implementation of 2.5D LST in the proposed procedures for the determination of interpersonal distance and body orientation within the framework of pedagogical research into conflict regulation between pairs of child-age friends facilitates the automatic, effective, objective and high-resolution (from both a temporal and spatial perspective) acquisition and evaluation of data with relevance to behaviour.
This Ph.D. thesis proposes the use of a novel 3D range imaging camera to gather data on human behaviour, and presents both a calibration tool developed for data processing purposes and a method for the contact-free determination of dense 3D motion vector fields. It therefore makes a contribution to current efforts in the field of the automated videographic documentation of bodily motion within the framework of dyadic interaction, and shows that photogrammetric methods can also deliver valuable results within the framework of motion evaluation tasks in the as-yet relatively untapped field of behavioural research.
|
Page generated in 0.0651 seconds