Spelling suggestions: "subject:"samenpflanzen"" "subject:"blütenpflanzen""
1 |
Acetogenine Sekundärmetabolite und ihre Produzenten Physiologie und Botanik ausgewählter Vertreter der Ancistrocladaceae, Dioncophyllaceae und Nepenthaceae sowie von Antidesma (Euphorbiaceae) /Rischer, Heiko. January 2002 (has links)
Würzburg, Univ., Diss., 2002. / Computerdatei im Fernzugriff ; Achtung: das Oeffnen des Links kann einige Minuten dauern, da es sich um eine grosse Datei (167,6 MB) handelt.
|
2 |
Acetogenine Sekundärmetabolite und ihre Produzenten Physiologie und Botanik ausgewählter Vertreter der Ancistrocladaceae, Dioncophyllaceae und Nepenthaceae sowie von Antidesma (Euphorbiaceae) /Rischer, Heiko. January 2002 (has links)
Würzburg, Univ., Diss., 2002. / Computerdatei im Fernzugriff ; Achtung: das Oeffnen des Links kann einige Minuten dauern, da es sich um eine grosse Datei (167,6 MB) handelt.
|
3 |
Rutschige Oberflächen von karnivoren Kannenpflanzen (Nepenthaceae) physikalisch-chemische Eigenschaften und mikroskopische Struktur epikutikulärer Wachskristalle von Nepenthes alata, N. albomarginata und N. intermedia /Riedel, Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Würzburg.
|
4 |
Acetogenine Sekundärmetabolite und ihre Produzenten Physiologie und Botanik ausgewählter Vertreter der Ancistrocladaceae, Dioncophyllaceae und Nepenthaceae sowie von Antidesma (Euphorbiaceae) /Rischer, Heiko. January 2002 (has links) (PDF)
Würzburg, Universiẗat, Diss., 2002.
|
5 |
Rutschige Oberflächen von karnivoren Kannenpflanzen (Nepenthaceae) : Physikalisch-chemische Eigenschaften und mikroskopische Struktur epikutikulärer Wachskristalle von Nepenthes alata, N. albomarginata und N. intermedia / Slippery surfaces of carnivorous pitcher plants (Nepenthaceae): physico-chemical properties and microscopic structure of epicuticular wax crystals in Nepenthes alata, N. albomarginata and N. intermediaRiedel, Michael January 2004 (has links) (PDF)
Pflanzen der Gattung Nepenthes decken einen erheblichen Anteil ihres Nährstoffbedarfs durch den Fang und die Verdauung tierischer Beute, insbesondere von Insekten. Als Fangorgane dienen kannenförmig umgewandelte Blattspreiten. Die Kanneninnenseiten sind in einer breiten Zone dicht mit epikutikulären Wachskristallen besetzt. Die Oberflächen dieser so genannten Gleitzone sind extrem rutschig für die meisten Insekten und spielen eine zentrale Rolle beim Fang und der Zurückhaltung der Beute in der Kanne. Frühere Untersuchungen beschrieben die Kristalle dabei als extrem fragil, wodurch diese unter der mechanischen Belastung eines Insekts leicht abrechen und somit der Kontakt zur Pflanzenoberfläche verloren geht. Um diese Hypothese zu überprüfen und den Mechanismus der Rutschigkeit verstehen zu können, hatte die vorliegende Arbeit zum Ziel, sowohl die strukturellen als auch die physikalisch-chemischen Eigenschaften der Wachskristalle in den Kannen von drei Nepenthes-Arten vergleichend zu charakterisieren. Diese Eigenschaften können jedoch nur dann bewertet werden, wenn die chemische Zusammensetzung der Wachskristalle verlässlich bestimmt werden kann. Um die gaschromatographische Trennung und massenspektrometrische Analyse der Komponenten zu erleichtern, werden hydroxyl-haltige Verbindungen häufig durch eine Derivatisierung mit N,O-Bis(trimethylsilyl)trifluoracetamid (BSTFA) in die entsprechenden Trimethylsilyl-Ether bzw. -Ester überführt. Dabei können jedoch auch unerwünschten Nebenreaktionen carbonyl-haltiger Verbindungen auftreten, die eine quantitative Analyse der ursprünglichen Komponenten erschweren. Im ersten Teil dieser Arbeit ergab die Überprüfung der Derivatisierungsreaktion, dass aliphatische Aldehyde mit BSTFA zu cis-trans isomeren Alkenyl-Trimethylsilyl-Ethern und Alkenyl-Acetamid-Addukten reagierten. Weiterhin bildeten sich aus Aldehyden und primären Alkoholen unter den gegebenen Bedingungen, cis-trans isomere Alkenyl-Alkyl-Ether. Es konnte gezeigt werden, dass eine verlässliche und quantitative Bestimmung der ursprünglich vorhandenen Aldehyd- und Alkoholmengen nur unter einer Quantifizierung der in den resultierenden Nebenprodukten gebundenen Mengen möglich war. Im zweiten Teil dieser Arbeit zeigten rasterelektronenmikroskopische Untersuchungen an den Gleitzonenoberflächen von drei Nepenthes-Arten, dass die epikutikulären Wachskristalle ein Netzwerk aus glattrandigen Plättchen bilden und senkrecht aus den Oberflächen herausstehen. Es wurden Methoden etabliert, die eine mechanische Präparation der Wachs-kristalle von den Gleitzonenoberflächen erlaubten. Dabei zeigten die Kristalle eine hohe strukturelle Integrität. Die Beprobungsstrategien erwiesen sich als selektiv für die epikutiku-lären Wachse und somit für die Schnittstelle der Pflanze-Insekten-Wechselwirkung. Die anschließenden chemischen Analysen zeigten deutliche Gradienten zwischen den Zusammen-setzungen der epikutikulären und intrakutikulären Wachskompartimente. Die epikutikulären Kristalle bestanden aus Mischungen aliphatischer Komponenten und waren von sehr lang-kettigen Aldehyden dominiert. Triacontanal war in allen Fällen die Hauptkomponente und weitgehend für die Kristallbildung verantwortlich. Diese Ergebnisse quantifizierten erstmalig direkt die Zusammensetzung epikutikulärer Wachskristalle und bestätigten die für deren Bildung ursprüngliche Hypothese einer spontanen Phasentrennung eines hochkonzentrierten Bestandteils. Die schlechte Löslichkeit der Kristalle von verschiedenen Nepenthes-Arten in Chloroform wies zudem darauf hin, dass sie polymere Formen der Aldehyde beinhalteten. Diese Vermutung konnte im dritten Teil dieser Arbeit durch ATR-FTIR-spektroskopische Untersuchungen bestätigt werden. Die Kombination dieser Analysetechnik mit einer der mechanischen Beprobungsstrategien zeigte, dass weder isolierte Kristalle, noch Kristalle auf nativen Oberflächen, monomere Aldehyde beinhalteten. Diese konnten jedoch durch Tempe-raturerhöhung oder Lösen in Chloroform unter erhöhter Temperatur freigesetzt werden. Auf Grund charakteristischer Absorptionseigenschaften, der molekularen Anordnung sowie dem Phasenverhalten der beteiligten Komponenten konnte geschlossen werden, dass die Aldehyde in nativen Kristallen in Form von Polyacetalen vorliegen. Dies lässt vermuten, dass die epikutikulären Wachskristalle dadurch nicht nur thermisch und chemisch, sondern auch mechanisch verstärkt werden. Werden alle Daten zusammengefasst, können die strukturellen sowie physikalisch-chemischen Eigenschaften der epikutikulären Wachskristalle auf den Gleitzonenoberflächen verschiedener Nepenthes-Arten im Kontext ihrer ökologischen Funktion neu beurteilt werden. Auf diesen Ergebnissen basierend kann die Hypothese aufgestellt werden, dass die Kristalle im Kräftebereich, den ein Haftorgan eines Insektes auf sie ausübt, mechanisch stabil sind und somit andere Mechanismen die Rutschigkeit verursachen. / Plants in the genus Nepenthes obtain a substantial nutrient supply by trapping and digesting animal prey, especially insects. The trapping organs are highly modified leaf blades forming pitcher-like pitfalls. A broad zone of the inner surface of these traps is densely covered with epicuticular wax crystals. It was long known that these surfaces are extremely slippery for most insects and play a pivotal role in trapping and retaining of pray in the pitcher. Earlier investigations described the crystals as extremely fragile, breaking easily under the mechanical load of an insect and hence preventing contact to the plant surface. To test this hypothesis and to understand the mechanism of slipperiness, this work aimed to comparatively characterize the structural as well as the physico-chemical properties of the wax crystals in the pitchers of N. alata, N. albomarginata and N. intermedia. However, these properties can only be judged if the chemical composition of the crystals can be determined reliably. Cuticular waxes commonly represent complex mixtures of cyclic and aliphatic substances with different functional groups. To facilitate the gas chromato-graphic separation and mass spectrometric identification of the components, hydroxyl-containing compounds are often transformed into the corresponding trimethylsilyl ethers or esters by derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). During this reaction however, also undesired side products of carbonyl-containing compounds may occur, impeding a quantitative analysis of the original compounds. In the first part of this work the examination of the derivatization reaction showed that aliphatic aldehydes reacted with BSTFA to cis-trans isomeric alkenyltrimethylsilyl ethers and alkenylacetamide adducts. Furthermore, aldehydes formed cis-trans isomeric alkenylalkyl ethers with primary alcohols under the given conditions. It was shown that reliable and quantitative determinations of the original aldehyde and alcohol contents were only possible by quantification also of their amounts present in side products. In the second part of this work scanning electron microscopic studies on the inner surfaces of the pitchers revealed the crystals to form a network of entire platelets protruding perpen-dicularly from the surfaces. Methods for the mechanical preparation of the wax crystals were established in which the crystals showed a high structural integrity. The sampling strategies proved to be highly selective for the epicuticular wax material and hence, for the interface of the plant-insect interaction. The following chemical analyses revealed distinct gradients between the compositions of the epicuticular and intracuticular compartments. The epi-cuticular crystals consisted of a mixture of aliphatic components that was dominated by very long-chain aldehydes. In all cases, triacontanal was the major constituent and largely responsible for crystal formation. These results for the first time directly quantified the composition of epicuticular wax crystals and confirmed the original hypothesis that described crystal formation as a spontaneous phase separation of one highly concentrated constituent. The low solubility of the crystals from different Nepenthes species indicated moreover, that they contained polymeric forms of the aldehydes. This assumption could be verified by ATR-FTIR spectroscopic studies. The combination of this analytical technique with one of the mechanical sampling strategies showed that neither isolated crystals nor those crystals on native surfaces contained monomeric aldehydes. These however could be released by heating or dissolving the crystals in chloroform at elevated temperatures. From the characteristic absorption properties, the molecular arrangement as well as the phase behaviour of the involved components it was concluded that the aldehydes in native crystals existed as polyacetals. From this the epicuticular wax crystals are assumed not only to be reinforced thermally and chemically but also mechanically. Combining all data, the structural and physico-chemical properties of the epicuticular wax crystals on the slippery surfaces of different Nepenthes species can be newly judged with regard to their ecological function. Based on these results, it is hypothesized that the crystals are mechanically stable in the force range applied by an insect attachment device and therefore other mechanisms cause the slipperiness.
|
6 |
Acetogenine Sekundärmetabolite und ihre Produzenten: Physiologie und Botanik ausgewählter Vertreter der Ancistrocladaceae, Dioncophyllaceae und Nepenthaceae sowie von Antidesma (Euphorbiaceae) / Acetogenic secondary metabolites and their producers: Physiology and botany of selected representatives of the Ancistrocladaceae, Dioncophyllaceae and Nepenthaceae as well as Antidesma (Euphorbiaceae)Rischer, Heiko January 2002 (has links) (PDF)
Sekundäre Pflanzenstoffe sind aufgrund ihrer großen Strukturvielfalt sowohl als Leit- und Wirkstoffe für die Pharma- und Pflanzenschutzforschung in den Industrieländern als auch zur unmittelbaren medizinischen Grundversorgung der Entwicklungsländer von herausragender Bedeutung für den Menschen. Eine Klasse pharmakologisch, biogenetisch und chemotaxonomisch interessanter Sekundärmetabolite sind die Naphthylisochinolin-Alkaloide, die ausschließlich in den eng verwandten tropischen Pflanzenfamilien Ancistrocladaceae und Dioncophyllaceae vorkommen. Der Untersuchung der Biosynthese dieser acetogeninen Metabolite (z.B. Dioncophyllin A), einschließlich einiger Vorstufenderivate (z.B. Plumbagin, Droseron und Isoshinanolon), durch die konsequente Etablierung von in-vitro-Systemen sowie der Biologie ihrer pflanzlichen Produzenten am Naturstandort und in Kultur, wurde das Hauptaugenmerk in dieser Arbeit gewidmet. Außerdem wurden die biologischen Aktivitäten der Substanzen getestet. Daneben wurde die Strategie der stabilisotopenmarkierten Vorstufenverfütterung exemplarisch auf eine Art aus den nahe verwandten Nepenthaceen ausgeweitet, indem der natürliche Aufnahmemechanismus der carnivoren Pflanze ausgenutzt wurde. Anhand von Verfütterungsexperimenten mit ebenfalls neu etablierten Zellkulturen konnte außerdem die Struktur eines neuartigen Pyridon-Alkaloids (Antidesmon) aus Antidesma membranaceum, das ursprünglich als Isochinolin beschrieben worden war, revidiert werden und dessen ungewöhnliche Biosynthese aus Acetat und Glycin aufgeklärt werden. / Secondary metabolites from plants exhibit a great structural diversity and are therefore of great importance for mankind. While they are used in the industrial countries as leads and drugs in the pharmaceutical and the agrochemical research, they contribute directly to the basic medicinal supply in the developing countries. The naphthylisoquinoline alkaloids constitute a class of pharmacologically, biogenetically and chemotaxonomically interesting secondary metabolites exclusively found in the Ancistrocladaceae and in the closely related tropical plant family Dioncophyllaceae. The main objective of this work was devoted to the investigation of the biosynthesis of these acetogenic metabolites (e.g. Dioncophylline A) including several precursors (e.g. Plumbagin, Droserone and Isoshinanolone) by means of consistently establishing in vitro systems, but also to the biology of their producers in the natural habitat and in cultivation. Furthermore, the biological activities of the substances were tested. Additionally the strategy of feeding stable isotope labelled precursors was exemplarily adopted to a species of the closely related Nepenthaceae by using the natural uptake mechanism of the carnivorous plant. Feeding experiments with likewise recently established cell cultures revealed the structure of a novel pyridone alkaloid (Antidesmone) from Antidesma membranaceum, which had originally been described as an isoquinoline, and its unusual biosynthesis from acetate and glycine.
|
7 |
Biomechanik von Insekten-Pflanzen-Interaktionen bei Nepenthes-Kannenpflanzen / Biomechanics of insect-plant interactions in Nepenthes pitcher plantsBohn, Holger Florian January 2007 (has links) (PDF)
Interaktionen zwischen Insekten und Pflanzen können auf chemischen oder mechanischen Faktoren beruhen. Mechanische Faktoren spielen eine besonders wichtige Rolle bei den Fallen karnivorer Pflanzen. Ziel dieser Arbeit war es, die Rolle mechanischer Faktoren in der Interaktion zwischen der Kannenpflanze Nepenthes bicalcarata und der Ameise Camponotus schmitzi aufzuklären, bei der Ameisen Gegenanpassungen zu spezialisierten pflanzlichen Fangstrukturen entwickelt haben. Im Rahmen meiner Arbeit habe ich mich mit den Fragen beschäftigt, 1) welche Kannenstrukturen und welche Mechanismen für den Fang von Arthropoden wichtig sind und 2) welche speziellen Anpassungen C. schmitzi-Ameisen für das Leben auf ihrer karnivoren Wirtspflanze besitzen. Bisher wurde angenommen, dass Nepenthes-Kannen Tiere mit Hilfe von rutschigen Wachskristallschichten fangen. Ich konnte zeigen, dass ein weiterer, bisher unbekannter Fangmechanismus existiert, welcher auf speziellen Oberflächeneigenschaften des Kannenrandes (Peristom) und "Insekten-Aquaplaning" basiert. Das Peristom besitzt eine regelmäßige Mikrostruktur, welche dafür sorgt, dass die Oberfläche vollständig mit Wasser benetzbar ist, so dass sie bei feuchter Witterung von homogenen Flüssigkeitsfilmen überzogen ist. Auf dem trockenen Peristom können Ameisen ohne Schwierigkeiten laufen und Nektar von den am inneren Peristomrand gelegenen Nektarien ernten. Wird die Oberfläche aber beispielsweise durch Regen nass, rutschen die meisten Tiere ab und stürzen in die Kanne. Messungen der Reibungskräfte von Weberameisen (Oecophylla smaragdina) auf dem Peristom von N. bicalcarata zeigten, dass Flüssigkeitsfilme auf der Oberfläche die Anhaftung der Haftorgane (Arolien) verhindern, und dass die Mikrostruktur des Peristoms auch den Einsatz der Krallen unterbindet. Versuche an Nepenthes alata zeigten darüber hinaus, dass dieser Fangmechanismus des Peristoms auch für Nepenthes-Arten mit wachsbereifter Kanneninnenwand essentiell, und die Wachsschicht eher für die Retention gefangener Tiere wichtig ist. Zur Analyse der ökologischen Auswirkungen des "Aquaplaning"-Fangmechanismus habe ich die Peristomfeuchte von Nepenthes rafflesiana var. typica-Kannen zeitgleich mit meteorologischen Daten im Feld kontinuierlich aufgezeichnet und mit Experimenten zur Beurteilung der Fangeffizienz der Kannen kombiniert. Die Ergebnisse dieser Versuche zeigen, dass die Kannen abhängig vom Befeuchtungsgrad des Peristoms zeitweise sehr effiziente Fallen mit Fangraten von 80% sein können, während sie zu anderen Zeiten vollkommen ineffizient sind. Die Variation der Peristomfeuchte wird durch Regen, Kondensation und von den Peristomnektarien sezerniertem Nektar verursacht. Es ist zu vermuten, dass die nur zeitweise und unvorhersehbare Aktivierung der Nepenthes-Kannenfallen durch Nässe der Evolution von Vermeidungsstrategien bei Beutetieren entgegenwirkt. Im Rahmen der Untersuchungen, welche mechanischen Anpassungen C. schmitzi-Ameisen für das Leben auf N. bicalcarata besitzen habe ich mich auf die Fragen konzentriert, wie es den Ameisen gelingt den Peristom-Fangmechanismus zu umgehen und welche Anpassungen sie besitzen um in der Kannenflüssigkeit tauchend und schwimmend nach Nahrung zu suchen. Im Gegensatz zu generalistischen Arten stürzen C. schmitzi-Ameisen auf dem nassen Peristom nicht ab. Durch selektive Manipulation der tarsalen Haftstrukturen konnte ich demonstrieren, dass die Arolien für die Peristomlauffähigkeit der C. schmitzi-Ameisen eine wesentliche Rolle spielen. Für das Furagieren in der Kannenflüssigkeit verfügen C. schmitzi-Ameisen über ein sich wiederholendes, stereotypes Verhaltensmuster, welches aus einer Unterwasserlauf- und einer Oberflächenschwimmphase besteht. Meine Untersuchungen dieses Verhaltensmusters zeigten, dass die Ameisen am Ende der Unterwasserlaufphase mit Hilfe ihres stets vorhandenen Auftriebs zur Flüssigkeitsoberfläche aufsteigen. Dabei taucht ein Teil ihres Hinterleibs aus der Kannenflüssigkeit auf, was den Ameisen die Sauerstoffaufnahme aus der Luft ermöglicht. Nach dem Auftauchen schwimmen C. schmitzi-Ameisen mittels schneller Beinbewegungen an der Oberfläche der Kannenflüssigkeit. Dabei ähnelt die Bewegungskoordination ihrer Beine dem bei Ameisen für die Fortbewegung an Land typischen Dreifußgang. Ein Vergleich der Kinematik von schwimmenden und laufenden C. schmitzi-Ameisen hat gezeigt, dass schwimmende Ameisen ihre Beine in der Schlagphase mit einer höheren Winkelgeschwindigkeit als in der Rückholphase bewegen, während dies bei den laufenden Tieren genau umgekehrt ist. Ferner strecken schwimmende Ameisen ihre Beine während der Schlagphase weiter aus als in der Rückholphase, wohingegen laufende Ameisen in beiden Bewegungsphasen vergleichbare Beinradien aufweisen. Dies lässt den Schluss zu, dass die Schwimmkinematik der C. schmitzi-Ameisen eine abgewandelte Form ihrer Laufkinematik darstellt, welche für die Erzeugung von Vortrieb im Wasser optimiert wurde. / Insect-plant interactions based on either chemical or mechanical factors, play a key role in nature. Mechanical factors are of particular importance for the animal traps of carnivorous plants. The aim of this study is to clarify the role of mechanical factors in the interaction between the pitcher plant Nepenthes bicalcarata and its ant partner, Camponotus schmitzi which has evolved counter adaptations against the specialised capture structures of the plant. This study investigates two questions, firstly, which of the pitchers' structures and which mechanisms are important for the capture of arthropods and secondly, what are the special adaptations that enable the C. schmitzi ants to live on their carnivorous host plant. It has so far been suggested, that Nepenthes pitchers capture prey by means of slippery epicuticular wax crystals. I was however able to show, that another, yet unknown capture mechanism exists. It is based on the special surface properties of the pitcher rim (peristome) and on the phenomenon of insect "aquaplaning". The peristome is characterized by a regular microstructure with radial ridges of smooth overlapping epidermal cells, which form a series of steps toward the pitcher interior. This surface is completely wettable by water, so that under humid weather conditions it is covered by homogenous liquid films. If the peristome is dry, ants can run freely on it and harvest nectar from the nectaries at the inner margin of the peristome. As soon as the peristome surface is wetted, for example by rain, it becomes extremely slippery for insects, so that most of the ant visitors are trapped. By measuring the friction forces of weaver ants (Oecophylla smaragdina) on the peristome of N. bicalcarata, I was able to show that the liquid films on the surface disrupt attachment for the soft adhesive pads (arolia) and that the surface topography impedes the use of claws. Experiments on Nepenthes alata demonstrated that the trapping mechanism of the peristome is also essential in Nepenthes species with waxy inner pitcher walls, indicating that the waxy surfaces are more important for the retention rather than the capture of prey. I investigated the ecological implications of the "aquaplaning" capture mechanism in Nepenthes rafflesiana var. typica by combining meteorological data and continuous field measurements of peristome wetness with experimental assessments of the pitchers’ capture efficiency. My results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but are completely ineffective at other times. These dramatic changes are due to the wetting conditions of the peristome. Variation of peristome wetness and thus the variation of capture efficiency is caused by rain, condensation, and nectar secreted from the peristome nectaries. I propose that the intermittent and unpredictable activation of Nepenthes pitcher traps prevents the evolution of avoidance strategies in prey animals. In the second part of my study I investigated the mechanical adaptations that the C. schmitzi possess in order to live on N. bicalcarata. I focused on two principal questions, how are the ants able to circumvent the peristome capture mechanism and what adaptations do they need in order to swim and dive in the digestive fluid. In contrast to generalist ants, C. schmitzi ants are capable of running on the wet peristome without difficulties. Through selective manipulation of tarsal attachment structures I was able to demonstrate, that the arolia are essential for the ants’ capability to run on the wet peristome. Whilst foraging in the pitcher fluid C. schmitzi ants show a repetitive stereotyped behaviour pattern, consisting of an underwater running and surface swimming phase. My analysis of this behaviour pattern showed that at the end of the underwater running phase the ants advance to the fluid surface with the aid of buoyancy. When reaching the surface film parts of the ants’ gaster and head emerge. I was able to show that while foraging in the pitcher fluid the emerging of the gaster is crucial for the respiration of the ants. After emersion the ants swim at the surface of the pitcher fluid using fast leg movements. Hence the leg coordination is similar to a tripod gait which is typical for their locomotion on land. A comparison between the kinematics of swimming and running C. schmitzi ants showed that whilst swimming, the angular velocity of their legs is higher in the stroke than in the recovery, whereas the opposite is true whilst running. Furthermore the swimming ants stretch their legs further in the stroke than in the recovery whereas the leg radius of running ants does not vary much throughout a step. It can be concluded that the swimming kinematics of C. schmitzi ants derives from the kinematics of their running and has been optimized for generating thrust in water.
|
Page generated in 0.0369 seconds