• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemicky modifikované částice z myšího polyomaviru a jejich interakce s membránově vázaným nádorovým antigenem specifickým pro prostatu (PSMA) / Chemically modified Murine Polyomavirus-like particles and their interaction with Prostate-Specific Membrane Antigen (PSMA)

Blažková, Kristýna January 2014 (has links)
Prostate cancer is one of the most abundant types of cancer among men and the demand for a specific treatment is very high. In this thesis, I have focused on using Glutamate Carboxypepti- dase II (GCPII), as a target for a proof-of-principle delivery system. GCPII is a transmembrane protein that internalizes after a binding of a ligand and is overexpressed in prostate cancer. Virus-like particles from Murine polyomavirus (VLPs) are a suitable nanocarrier for the delivery of imaging agents and drugs. Here I describe modifying these VLPs with inhibitors of GCPII and fluorescent dyes and characterize their binding to GCPII on surface plasmon resonance and to cells expressing GCPII on confocal microscopy. VLPs carrying a GCPII inhibitor show specific binding to GCPII on surface plasmon reso- nance, however they bind non-specifically to cells that don't express GCPII. Several approaches have been tried to avoid that. The substitution of BC loop on the exterior surface of VLPs that is partially responsible for the binding of sialic acid did not seem to affect specificity on cells. Another approach tested was coating of the wild-type VLPs with large polymer carrying a flu- orescent label and a GCPII inhibitor. After the conjugation of the polymer to the VLP, specific binding and internalization in GCPII-positive...

Page generated in 0.0385 seconds