• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalizações e teoremas limites para modelos estocásticos de rumores / Generalizations and limit theorems for stochastic rumour models

Rodriguez, Pablo Martin 13 October 2010 (has links)
Os modelos de Daley-Kendall e Maki-Thompson são os dois modelos estocásticos para difusão de rumores mais citados até o momento. Em ambos, uma população finita fechada e totalmente misturada é subdividida em três classes de indivíduos denominados ignorantes, informantes e contidos. Depois de um rumor ser introduzido na população, difunde-se através desta seguindo determinadas regras que dependem da classe à qual a pessoa que sabe do rumor pertence. Tanto a proporção final de indivíduos que nunca chegam a conhecer o rumor quanto o tempo que este demora em ser difundido são variáveis de interesse para os modelos propostos. As técnicas encontradas na literatura para estudar modelos de rumores são o princípio de difusão de constantes arbitrárias; argumentos de martingais; o método de funções geradoras e a análise de versões determinísticas do processo. Neste trabalho apresentamos uma alternativa para essas técnicas baseando-nos na teoria de cadeias de Markov \"density dependent\'\'. O uso desta nova abordagem nos permite apresentar resultados assintóticos para um modelo geral que tem como casos particulares os famosos modelos de Daley-Kendall e Maki-Thompson, além de variações de modelos de rumores apresentados na literatura recentemente. / Daley-Kendall and Maki-Thompson models are the two most cited stochastic models for the spread of rumours phenomena, in scientific literature. In both, a closed homogeneously mixing population is subdivided into three classes of individuals called ignorants, spreaders and stiflers. After a rumor is introduced in the population, it spreads by following certain rules that depend on the class to which the individual who knows the rumor belongs. Both the final proportion of the population never hearing the rumor and the time it takes are variables of interest for the proposed models. The main tools used to study stochastic rumours have been the principle of the diffusion of arbitrary constants, martingale arguments, generating functions and the study of analogue deterministic versions. Relying on the theory of density dependent Markov chains, we present an alternative to these tools. This approach allows us to establish asymptotical results for a general model that has as particular cases the classical Daley-Kendall and Maki-Thompson models, and other variations for rumour models reported in the literature recently.
2

Generalizações e teoremas limites para modelos estocásticos de rumores / Generalizations and limit theorems for stochastic rumour models

Pablo Martin Rodriguez 13 October 2010 (has links)
Os modelos de Daley-Kendall e Maki-Thompson são os dois modelos estocásticos para difusão de rumores mais citados até o momento. Em ambos, uma população finita fechada e totalmente misturada é subdividida em três classes de indivíduos denominados ignorantes, informantes e contidos. Depois de um rumor ser introduzido na população, difunde-se através desta seguindo determinadas regras que dependem da classe à qual a pessoa que sabe do rumor pertence. Tanto a proporção final de indivíduos que nunca chegam a conhecer o rumor quanto o tempo que este demora em ser difundido são variáveis de interesse para os modelos propostos. As técnicas encontradas na literatura para estudar modelos de rumores são o princípio de difusão de constantes arbitrárias; argumentos de martingais; o método de funções geradoras e a análise de versões determinísticas do processo. Neste trabalho apresentamos uma alternativa para essas técnicas baseando-nos na teoria de cadeias de Markov \"density dependent\'\'. O uso desta nova abordagem nos permite apresentar resultados assintóticos para um modelo geral que tem como casos particulares os famosos modelos de Daley-Kendall e Maki-Thompson, além de variações de modelos de rumores apresentados na literatura recentemente. / Daley-Kendall and Maki-Thompson models are the two most cited stochastic models for the spread of rumours phenomena, in scientific literature. In both, a closed homogeneously mixing population is subdivided into three classes of individuals called ignorants, spreaders and stiflers. After a rumor is introduced in the population, it spreads by following certain rules that depend on the class to which the individual who knows the rumor belongs. Both the final proportion of the population never hearing the rumor and the time it takes are variables of interest for the proposed models. The main tools used to study stochastic rumours have been the principle of the diffusion of arbitrary constants, martingale arguments, generating functions and the study of analogue deterministic versions. Relying on the theory of density dependent Markov chains, we present an alternative to these tools. This approach allows us to establish asymptotical results for a general model that has as particular cases the classical Daley-Kendall and Maki-Thompson models, and other variations for rumour models reported in the literature recently.

Page generated in 0.0726 seconds