• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies towards peptide synthesis in aqueous phase

Gamble, David Lewis January 1995 (has links)
No description available.
2

New asymmetric metal-catalysed addition processes for amine synthesis

Franchino, Allegra January 2017 (has links)
This thesis concerns the development of novel catalytic approaches for the construction of stereocentres bearing a nitrogen atom. In 2011, the Dixon group reported a Ag(I)/cinchona-derived amino phosphine catalytic system for the activation of isocyanoacetates in asymmetric aldol and Mannich reactions. During this thesis work it was sought to extend the scope of this catalytic system to Mannich additions of other isocyanide pronucleophiles, then the focus was broadened to include Reformatsky and α-alkylation reactions of ketimine substrates. Chapter 1 gives an overview of the state of the art with particular emphasis on catalytic enantioselective additions to ketimines and the use of activated isocyanides as pronucleophiles. Chapter 2 describes the application of the Ag-catalysed enantio- and diastereoselective aldol reaction of isocyanoacetates to the concise asymmetric synthesis of the antibiotic chloramphenicol, which possesses a chiral stereodefined α-amino β-hydroxy motif. Chapter 3 details our efforts to expand the scope of the Ag(I)/amino phosphine catalytic system to the activation of more challenging isocyanides lacking an electron-withdrawing group in the α-position by investigating aldol and Mannich reactions of benzyl isocyanide. Chapter 4 describes how the scope of the Ag(I)/amino phosphine catalytic system was successfully extended to another pronucleophile, the versatile p-toluenesulfonylmethyl isocyanide (TosMIC). The first catalytic enantio- and diastereoselective addition of TosMIC to N-diphenylphosphinoyl (N-DPP) ketimines was developed, affording 2-imidazolines possessing two contiguous stereocentres with high yields and excellent levels of stereocontrol. Chapter 5 describes the development of a Ni(II)-catalysed Reformatsky reaction of N-DPP ketimines with ethyl bromoacetate and diethylzinc, providing racemic amines bearing a quaternary stereocentre in the α-position in good yields. Chapter 6 reports the serendipitous discovery of the α-alkylation of N-DPP ketimines with ethyl bromoacetate using visible light photoredox catalysis. The transformation, catalysed by ruthenium(II) and nickel(II) complexes under mild conditions, was optimised, its scope assessed and the mechanism investigated.
3

Stereoselektivní adiční reakce na ketiminy / Stereoslective addition reaction to ketimines

Franc, Michael January 2017 (has links)
This diploma thesis deals with the stereoselective addition reaction of benzothiophenone derivatives to ketimines derived from isatin using bifunctional organocatalysis. The stereoselective addition reaction was optimized to provide the appropriate reaction conditions which were subsequently used to study the scope of the reaction. Keywords Organocatalysis, stereoselective synthesis, bifunctional organocatalysts, ketimines, sulphur heterocykles.
4

Využití organokatalýzy založené na tvorbě H-vazeb v organické syntéze / Application of H-Bonding Catalysis in Organic Synthesis

Urban, Michal January 2020 (has links)
Over the last 20 years, asymmetric synthesis has seen considerable progress, particularly in the field of catalysis. In addition to enzyme catalysis and transition metal catalysis, organocatalysis, catalysis using small organic molecules also plays an important role in the asymmetric synthesis. Chiral organocatalysts allow the preparation of structurally interesting and optically pure molecules via various activation modes. This work is focused on the use of organocatalysis based on the formation of hydrogen bonds in organic synthesis. Our study was devoted to the enantioselective organocatalytic reactions of ketimines leading to the formation of chiral vicinal centers. The first part deals with the organocatalytic enantioselective addition reaction of α- fluoro(phenylsulfonyl)methanes to ketimines derived from isatin. The reaction utilizes catalysis of a commercially available quinoline alkaloid cinchonine. A series of enantiomerically pure compounds were prepared containing two neighboring stereocenters in good yields of up to 97%, with diastereoselectivity up to 6: 1 dr and with enantiomeric excesses of 70-98% ee. In most cases pure diastereomers were obtained. In the second part of the work a method of enantioselective orgnocatalytic synthesis of bis-spirocompounds containing two neighboring...

Page generated in 0.0398 seconds