• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modellgestützte Analyse der Einflüsse von Veränderungen der Waldwirtschaft und des Klimas auf den Wasserhaushalt grundwasserabhängiger Landschaftselemente / Model-based Analysis of the Impact of Changing Climate and Forest Cultivation on the Water Balance of Groundwater-Dependent Landscape Elements

Natkhin, Marco January 2010 (has links)
In den letzten drei Jahrzehnten wurden in einigen Seen und Feuchtgebieten in bewaldeten Einzugsgebieten Nordost-Brandenburgs sinkende Wasserstände beobachtet. In diesen Gebieten bestimmt die Grundwasserneubildung im Einzugsgebiet maßgeblich das Wasserdargebot der Seen und Feuchtgebiete, die deshalb hier als grundwasserabhängige Landschaftselemente bezeichnet werden. Somit weisen die sinkenden Wasserstände auf einen Rückgang der wegen des geringen Niederschlagsdargebotes ohnehin schon geringen Grundwasserneubildung hin. Die Höhe der Grundwasserneubildung ist neben den hydroklimatischen Randbedingungen auch von der Landnutzung abhängig. Veränderungen in der Waldvegetation und der hydroklimatischen Randbedingungen bewirken Änderungen der Grundwasserneubildung und beeinflussen somit auch den Wasserhaushalt der Seen und Feuchtgebiete. Aktuell wird die Waldvegetation durch Kiefernmonokulturen dominiert, mit im Vergleich zu anderen Baumarten höherer Evapotranspiration. Entwicklungen in der Forstwirtschaft streben die Verringerung von Kiefernmonokulturen an. Diese sollen langfristig auf geeigneten Standorten durch Laubmischwälder ersetzt werden. Dadurch lassen sich eine geringere Evapotranspiration und damit eine höhere Grundwasserneubildung erreichen. In der vorliegenden Arbeit werden am Beispiel des Redernswalder Sees und des Briesensees die Ursachen der beobachteten sinkenden Wasserstände analysiert. Ihre Wasserstände nahmen in den letzten 25 Jahren um mehr als 3 Meter ab. Weiterhin wird untersucht, wie die erwarteten Klimaänderungen und Veränderungen in der Waldbewirtschaftung die zukünftige Grundwasserneubildung und den Wasserhaushalt von Seen beeinflussen können. Die Entwicklung der Grundwasserneubildung im Untersuchungsgebiet wurde mit dem Wasserhaushaltsmodell WaSiM-ETH simuliert. Die Analyse der Wechselwirkungen der Seen mit dem regionalen quartären Grundwasserleitersystem erfolgte mit dem 3D-Grundwassermodell FEFLOW. Mögliche zukünftige Veränderungen der Grundwasserneubildung und der Seewasserstände durch Klimaänderungen und Waldumbau wurden mit Szenarienrechnungen bis zum Jahr 2100 analysiert. Die modellgestützte Analyse zeigte, dass die beobachteten abnehmenden Wasserstände zu etwa gleichen Anteilen durch Veränderungen der hydroklimatischen Randbedingungen sowie durch Veränderungen in der Waldvegetation und damit abnehmenden Grundwasserneubildungsraten zu erklären sind. Die zukünftigen Entwicklungen der Grundwasserneubildung und der Wasserstände sind geprägt von sich ändernden hydroklimatischen Randbedingungen und einem sukzessiven Wandel der Kiefernbestände zu Laubwäldern. Der Waldumbau hat positive Wirkungen auf die Grundwasserneubildung und damit auf die Wasserstände. Damit können die Einflüsse des eingesetzten REMO-A1B-Klimaszenarios zum Ende des Modellzeitraumes durch den Waldumbau nicht kompensiert werden, das Sinken des Wasserstandes wird jedoch wesentlich reduziert. Bei dem moderateren REMO-B1-Klimaszenario werden die Wasserstände des Jahres 2008 durch den Waldumbau bis zum Jahr 2100 überschritten. / Declining water levels have been observed in some lakes and wetlands in forested catchments in North-East Brandenburg (Germany). Groundwater recharge mainly controls the supply of water available for lakes and wetlands, therefore determining them as groundwater-dependent landscape elements. Thus, the declining water levels indicate a reduction of groundwater recharge. Aspects such as climate change and different forest management practices have been considered as main factors affecting the regional groundwater regime. Currently, forest landscapes in North-East Brandenburg are dominated by pine monoculture. Depending on the climate conditions, groundwater recharge can be significantly lower under pine than under broad-leaved species like beech or oak. Regional forest administration is currently planning to expand the share of broad-leaved trees among mixed deciduous forest in the future. For this study, two lakes were chosen, the Redernswalder See and the Briesensee at Poratz. Water gauge measurements over the last 25 years showed a decline in lake water level by more than 3 m. To identify and quantify the share of changes in both, climate and forest management, the principal processes were evaluated using field measurements and water balance modelling. In the following step, alternative climate change and forestry scenarios were analysed to discover their impacts on the regional distribution of groundwater recharge. At first, the causes of the declining observed water levels were analysed. For this purpose, the physically based and fully distributed water balance model WaSiM-ETH was used to simulate groundwater recharge in the catchment and evaporation from the lake surfaces from 1958 to 2007. To analyse the geohydrological conditions, a FEFLOW 3D groundwater model was built up for the underlying Quaternary aquifer system. Possible development directions of the water balance were simulated under the influence of climate change and forest conversion until 2100. The model based analysis showed that the observed declining water levels are caused by both changes in climatic boundary conditions and in forest vegetation (age distribution and understorey) followed by decreasing groundwater recharge with an equal magnitude. The future developments of groundwater recharge and water levels are governed by changes in climatic boundary conditions and a transition from pine monoculture to broad-leaved trees. Forest conversion will show a positive effect on groundwater recharge and likely increase the water levels of lakes and wetlands. The forest conversation can not completely compensate the impact of climate change to the lake water levels, but the decrease can be significantly limited.
2

Abflußentwicklung in Teileinzugsgebieten des Rheins : Simulationen für den Ist-Zustand und für Klimaszenarien / Development of runoff in subcatchments of the River Rhine : simulations of the current state and for climate change scenarios

Schwandt, Daniel January 2003 (has links)
Die vorliegende Arbeit 'Abflu&szlig;entwicklung in Teileinzugsgebieten des Rheins - Simulationen f&uuml;r den Ist-Zustand und f&uuml;r Klimaszenarien' untersucht Auswirkungen m&ouml;glicher zuk&uuml;nftiger Klima&auml;nderungen auf das Abflu&szlig;geschehen in ausgew&auml;hlten, durch Mittelgebirge gepr&auml;gten Teileinzugsgebieten des Rheins: Mosel (bis Pegel Cochem); Sieg (bis Pegel Menden 1) und Main (bis Pegel Kemmern).<br><br>In einem ersten Schritt werden unter Verwendung des hydrologischen Modells HBV-D wichtige Modellprozesse entsprechend der Einzugsgebietscharakteristik parametrisiert und ein Abbild der Gebietshydrologie erzeugt, das mit Zeitreihen gemessener Tageswerte (Temperatur, Niederschlag) eine Zeitreihe der Pegeldurchfl&uuml;sse simulieren kann. Die G&uuml;te der Simulation des Ist-Zustandes (Standard-Me&szlig;zeitraum 1.1.1961-31.12.1999) ist f&uuml;r die Kalibrierungs- und Validierungszeitr&auml;ume in allen Untersuchungsgebieten gut bis sehr gut.<br>Zur Erleichterung der umfangreichen, zeitaufwendigen einzugsgebietsbezogenen Datenaufbereitung f&uuml;r das hydrologische Modell HBV-D wurde eine Arbeitsumgebung auf Basis von Programmerweiterungen des Geoinformationssystems ArcView und zus&auml;tzlichen Hilfsprogrammen entwickelt. Die Arbeitsumgebung HBV-Params enth&auml;lt eine graphische Benutzeroberfl&auml;che und r&auml;umt sowohl erfahrenen Hydrologen als auch hydrologisch geschulten Anwendern, z.B. Studenten der Vertiefungsrichtung Hydrologie, Flexibilit&auml;t und vollst&auml;ndige Kontrolle bei der Ableitung von Parameterwerten und der Editierung von Parameter- und Steuerdateien ein. Somit ist HBV-D im Gegensatz zu Vorl&auml;uferversionen mit rudiment&auml;ren Arbeitsumgebungen auch au&szlig;erhalb der Forschung f&uuml;r Lehr- und &Uuml;bungszwecke einsetzbar.<br><br>In einem zweiten Schritt werden Gebietsniederschlagssummen, Gebietstemperaturen und simulierte Mittelwerte des Durchflusses (MQ) des Ist-Zustandes mit den Zust&auml;nden zweier Klimaszenarien f&uuml;r den Szenarienzeitraum 100 Jahre sp&auml;ter (2061-2099) verglichen. Die Klimaszenarien beruhen auf simulierten Zirkulationsmustern je eines Modellaufes zweier Globaler Zirkulationsmodelle (GCM), die mit einem statistischen Regionalisierungsverfahren in Tageswertszenarien (Temperatur, Niederschlag) an Me&szlig;stationen in den Untersuchungsgebieten &uuml;berf&uuml;hrt wurden und als Eingangsdaten des hydrologischen Modells verwendet werden.<br>F&uuml;r die zweite H&auml;lfte des 21. Jahrhunderts weisen beide regionalisierten Klimaszenarien eine Zunahme der Jahresmittel der Gebietstemperatur sowie eine Zunahme der Jahressummen der Gebietsniederschl&auml;ge auf, die mit einer hohen Variabilit&auml;t einhergeht. Eine Betrachtung der saisonalen (monatlichen) &Auml;nderungsbetr&auml;ge von Temperatur, Niederschlag und mittlerem Durchflu&szlig; zwischen Szenarienzeitraum (2061-2099) und Ist-Zustand ergibt in allen Untersuchungsgebieten eine Temperaturzunahme (h&ouml;her im Sommer als im Winter) und eine generelle Zunahme der Niederschlagssummen (mit starken Schwankungen zwischen den Einzelmonaten), die bei der hydrologischen Simulation zu deutlich h&ouml;heren mittleren Durchfl&uuml;ssen von November bis M&auml;rz und leicht erh&ouml;hten mittleren Durchfl&uuml;ssen in den restlichen Monaten f&uuml;hren. Die St&auml;rke der Durchflu&szlig;erh&ouml;hung ist nach den individuellen Klimaszenarien unterschiedlich und im Sommer- bzw. Winterhalbjahr gegenl&auml;ufig ausgepr&auml;gt. Hauptursache f&uuml;r die simulierte starke Zunahme der mittleren Durchfl&uuml;sse im Winterhalbjahr ist die trotz Temperaturerh&ouml;hung der Klimaszenarien winterlich niedrige Evapotranspiration, so da&szlig; erh&ouml;hte Niederschl&auml;ge direkt in erh&ouml;hten Durchflu&szlig; transformiert werden k&ouml;nnen.<br>Der Vergleich der Untersuchungsgebiete zeigt in Einzelmonaten von West nach Ost abnehmende &Auml;nderungsbetr&auml;ge der Niederschlagssummen, die als Hinweis auf die Bedeutung der Kontinentalit&auml;tseinfl&uuml;sse auch unter ge&auml;nderten klimatischen Bedingungen in S&uuml;dwestdeutschland aufgefa&szlig;t werden k&ouml;nnten.<br>Aus den regionalisierten Klimaszenarien werden &Auml;nderungsbetr&auml;ge f&uuml;r die Modulation gemessener Zeitreihen mittels synthetischer Szenarien abgeleitet, die mit einem geringen Rechenaufwand in hydrologische Modellantworten &uuml;berf&uuml;hrt werden k&ouml;nnen. Die direkte Ableitung synthetischer Szenarien aus GCM-Ergebniswerten (bodennahe Temperatur und Gesamtniederschlag) an einzelnen GCM-Gitterpunkten erbrachte unbefriedigende Ergebnisse.<br>Ob, in welcher H&ouml;he und zeitlichen Verteilung die in den (synthetischen) Szenarien verwendeten Niederschlags- und Temperatur&auml;nderungen eintreten werden, kann nur die Zukunft zeigen. Eine Absch&auml;tzung, wie sich die Abflu&szlig;verh&auml;ltnisse und insbesondere die mittleren Durchfl&uuml;sse der Untersuchungsgebiete bei m&ouml;glichen &Auml;nderungen entwickeln w&uuml;rden, kann jedoch heute schon vorgenommen werden. <br><br>Simulationen auf Szenariogrundlagen sind ein Weg, unbekannte zuk&uuml;nftige Randbedingungen sowie regionale Auswirkungen m&ouml;glicher &Auml;nderungen des Klimasystems ausschnittsweise abzusch&auml;tzen und entsprechende Risikominderungsstrategien zu entwickeln. Jegliche Modellierung und Simulation nat&uuml;rlicher Systeme ist jedoch mit betr&auml;chtlichen Unsicherheiten verkn&uuml;pft. Vergleichsweise gro&szlig;e Unsicherheiten sind mit der zuk&uuml;nftigen Entwicklung des sozio&ouml;konomischen Systems und der Komplexit&auml;t des Klimasystems verbunden. Weiterhin haben Unsicherheiten der einzelnen Modellbausteine der Modellkette Emissionsszenarien/Gaszyklusmodelle - Globale Zirkulationsmodelle/Regionalisierung - hydrologisches Modell, die eine Kaskade der Unsicherheiten ergeben, neben Datenunsicherheiten bei der Erfassung hydrometeorologischer Me&szlig;gr&ouml;&szlig;en einen erheblichen Einflu&szlig; auf die Vertrauensw&uuml;rdigkeit der Simulationsergebnisse, die als ein dargestellter Wert eines Ergebnisbandes zu interpretieren sind.<br><br>Der Einsatz <br>(1) robuster hydrologischer Modelle, die insbesondere temperaturbeeinflu&szlig;te Prozesse ad&auml;quat beschreiben,<br>(2) die Verwendung langer Zeitreihen (wenigsten 30 Jahre) von Me&szlig;werten und<br>(3) die gleichzeitige vergleichende Betrachtung von Klimaszenarien, die auf unterschiedlichen GCMs beruhen (und wenn m&ouml;glich, verschiedene Emissionsszenarien ber&uuml;cksichtigen),<br>sollte aus Gr&uuml;nden der wissenschaftlichen Sorgfalt, aber auch der besseren Vergleichbarkeit der Ergebnisse von Regionalstudien im noch jungen Forschungsfeld der Klimafolgenforschung beachtet werden. / This thesis 'Development of runoff in subcatchments of the River Rhine - simulations of the current state and for climate change scenarios' investigates the impacts of possible future climate changes on runoff and runoff regime in selected subcatchments of the River Rhine. The regional climate in the selected subcatchments Mosel (up to gauge Cochem), Sieg (gauge Menden 1) and Main (gauge Kemmern) is affected by the middle mountain ranges.<br><br>In a first step, important model processes are parameterized according to catchment characteristics. A representation of the regional hydrology is then produced by using the hydrological model HBV-D. Based on time series of daily measurements (temperature, precipitation) at stations within the catchment, this representation can be used to realistically simulate time series of runoff and discharge. <br>In all examined areas, the quality of simulations of the calibration and validation periods for the current state (standard period of measurements 01/01/1961-12/31/1999) can be regarded as good to excellent. <br>To aid the catchment-specific, extensive and time-consuming data processing, a working environment for the hydrological model HBV-D has been developed. It is based on program extensions of the geographical information system ArcView and further programs. The working environment HBV-Params contains a graphical interface that gives both experienced hydrologists and students full control and enables them to flexibly derive parameter values and edit parameter and control files. In contrast to previous versions with only rudimentary working environments, HBV-D can therefore be utilized for research as well as for educational purposes. <br><br>In a second step, the current states of areal precipitation, areal temperature and simulated mean discharge (MQ) are compared to the corresponding states for two scenarios of future climate changes (100 years later, 2061-2099). These scenarios are based on simulated global circulations of one model run for each of two global circulation models (GCM). These global circulations are regionalized (downscaled) using a statistical approach into scenario time series of daily values (temperature, precipitation - input for the hydrological model) at control stations within the individual catchments. <br>For the second half of the 21st century, both regionalized climate change scenarios indicate increases in the mean annual areal temperature and mean annual sum of precipitation, along with a high variability of the latter. The seasonal (monthly) changes in temperature, precipitation and mean discharge between scenario state (2061-2099) and current state indicate increases in temperature (higher in summer than in winter) as well as a general increase in precipitation sums (strong fluctuations between individual months). In the hydrological simulations for all investigated catchments, this results in considerably higher mean discharges from November to March and small increases in mean discharge for the other months. The magnitude of the increases in discharge depends on the individual climate change scenario, one showing higher increases than the other during the summer half-year and vice versa for the winter half-year. The main reason for the simulated strong increase in mean discharge during winter half-year is, in spite of higher temperatures, the still relatively low evapotranspiration which allows higher precipitation to be directly transformed into higher discharges. <br>The comparison of the investigated catchments shows decreasing amounts of changes in the sum of precipitation from West to East in individual months. This indicates the importance of continentality under changed climatic conditions in Southwest Germany. <br>For the modification of measured time series (temperature, precipitation), which can be easily converted as synthetic scenarios into simulated hydrological results, amounts of change are derived from regionalized (downscaled) climate change scenarios. The derivation of synthetic scenarios directly from GCM output at individual GCM gridpoints yielded unsatisfactory results. <br>Only the future itself can show whether the timing and amount of changes in temperature and precipitation used in (synthetic) climate change scenarios come close to reality. An assessment of possible developments in runoff regime and specifically mean discharge under possible changed climatic conditions in the investigated catchments is already feasible today. <br><br>Simulations based on scenarios are one way to establish unknown future boundary conditions for the estimation of regional impacts of possible changes of the climate system. Nevertheless, all types of modeling and simulation of natural systems are linked with uncertainties. Rather large uncertainties persist regarding the future development of the socio-economic system and the complexity of the climate system and earth system. Furthermore, besides data uncertainties associated with the measurement of hydro-meteorological values, uncertainties associated with individual components of the model chain emission scenarios/gas cycle model - GCM/regionalization - hydrological model, which form a cascade of uncertainty, have a great influence on the trustworthiness of the simulation results (which are understood as one shown value within a range of results). <br><br>In the young field of climate impact research the use of <br>(1) robust hydrological models that adequately describe temperature-dependent processes,<br>(2) long time series (at least 30 years long) of measurements, <br>(3) concurrent comparisons of climate change scenarios, based on different GCMs (and, if possible, different emission scenarios)<br>should be considered for reasons of scientific thoroughness and to improve comparability of regional impact studies.
3

Land use effects and climate impacts on evapotranspiration and catchment water balance / Einfluss von Landnutzung und Klima auf die Gebietsverdunstung und den Wasserhaushalt von Flusseinzugsgebieten

Renner, Maik 13 January 2014 (has links) (PDF)
Evapotranspiration ET is a dominant Earth System process that couples the water and energy cycles at the earth surface. The pressure of global environmental changes foster the broad scientific aim to understand impacts of climate and land-use on evapotranspiration under transient conditions. In this work, the spatial scale of river catchments is addressed through data analysis of hydrological and meteorological archives with ET classically derived through water balance closure. Through a synthesis of various catchments with different climatic forcings and hydrological conditions, the core objectives of this thesis are: - Did environmental changes in the past, such as climatic- or land-use and land cover (LULC) changes, result in detectable non-stationary changes in the hydro-climate time series? - How can the impacts of climatic- from LULC changes on the hydroclimatology of catchments be separated? - What are the factors that control the sensitivity of ET and streamflow to external changes? These research questions are addressed for the climatic scales of long-term annual averages and seasonal conditions which characterise the hydroclimatology of river catchments. Illustrated by a rich hydro-climatic archive condensed for 27 small to medium sized river catchments in Saxony, a method is proposed to analyse the seasonal features of river flow allowing to detect shifting seasons in snow affected river basins in the last 90 years. Observations of snow depth at these same times lead to the conclusion, that changes in the annual cycle of air temperature have a large influence on the timing of the freeze-thaw in late winter and early spring. This causes large changes in storage of water in the snow pack, which leads to profound changes of the river regime, particularly affecting the river flow in the following months. A model-based data analysis, based on the fundamental principles of water and energy conservation for long-term average conditions, is proposed for the prediction of ET and streamflow, as well as the separation of climate related impacts from impacts resulting from changes in basin conditions. The framework was tested on a large data set of river catchments in the continental US and is shown to be consistent with other methods proposed in the literature. The observed past changes highlight that (i) changes in climate, such as precipitation or evaporative demand, result in changes of the partitioning within the water and energy balance, (ii) the aridity of the climate and to a lesser degree basin conditions determine the sensitivity to external changes, (iii) these controlling factors influence the direction of LULC change impacts, which in some cases can be larger than climate impacts. This work provides evidence, that changes in climatic and land cover conditions can lead to transient hydrological behaviours and make stationary assumptions invalid. Hence, past changes present the opportunity for model testing and thereby deriving fundamental laws and concepts at the scale of interest, which are not affected by changes in the boundary conditions. / Die Verdunstung ist ein maßgeblicher Prozess innerhalb des Klimasystems der Erde, welche den Wasserkreislauf mit dem Energiehaushalt der Erde verbindet. Eine zentrale wissenschaftliche Herausforderung ist, zu verstehen, wie die regionale Wasserverfügbarkeit durch Änderungen des Klimas oder der physiographischen Eigenschaften der Landoberfläche beeinflusst wird. Mittels einer integrierten Datenanalyse von vorhandenen langjährigen Archiven hydroklimatischer Zeitreihen werden die folgenden wissenschaftlichen Fragestellungen dieser Dissertation diskutiert: - Haben beobachtete Änderungen der Landoberfläche und des Klimas zu nachweisbaren, instationären hydroklimatischen Änderungen geführt? - Lassen sich die hydroklimatischen Auswirkungen von Klimaänderungen und Änderungen der Landoberfläche voneinander unterscheiden? - Welche Faktoren beeinflussen die Sensitivität von Abfluss und Verdunstung auf Veränderungen der klimatischen und physiographischen Randbedingungen? Hierbei fokussiert sich die Arbeit auf Änderungen im langjährige Mittel und im Jahresgang von hydroklimatischen Variablen auf der räumlichen Skala von Flusseinzugsgebieten. Zur Untersuchung des hydrologischen Regimes wurde ein harmonischer Filter angewandt, der es erlaubt, die Eintrittszeit des Jahresgangs (Phase) zu quantifizieren. Diese klimatologische Kenngröße wurde für eine Vielzahl von Einzugsgebieten in Sachsen untersucht, wobei sich vor allem für die Gebiete in den Kammlagen des Erzgebirges signifikante Veränderungen ergaben. Es konnte gezeigt werden, dass die signifikante Phasenverschiebung der Temperatur seit Ende der 1980er Jahre zu einer verfrühten Schneeschmelze und dadurch zu einem Rückgang des Abflusses bis in die Sommermonate hinein geführt hat. Desweiteren wurde eine modellbasierte Datenanalyse entwickelt, welche auf Massen- und Energieerhalt von Einzugsgebieten im langjährigen Mittel beruht. Das entwickelte Konzept erlaubt es, Auswirkungen von Klimaänderungen von anderen Effekten, welche z.B. durch Landnutzungsänderungen bedingt sind, abzugrenzen und zu quantifizieren. Die Ergebnisse einer Sensitivitätsanalyse dieses Konzeptes sowie die Anwendung auf einen umfangreichen hydroklimatischen Datensatz der USA zeigen: (i) Veränderungen im Wasser- oder Energiedargebot beeinflussen auch die Aufteilung der Wasser- und Energieflüsse. (ii) Die Aridität des Klimas und nachgeordnet die physiographischen Faktoren bestimmen die Sensitivität von Verdunstung und Abfluss. (iii) Beide Faktoren beeinflussen die Stärke und Richtung der Auswirkungen von physiographischen Änderungen. (iv) Anthropogene Veränderungen der Landoberfläche führten zum Teil zu stärkeren Auswirkungen als klimatisch bedingte Änderungen. Zusammenfassend zeigt sich, dass Änderungen von Landnutzung und Klima zu Verschiebungen im Wasserhaushalt führen können und damit auch die Annahme von Stationarität verletzen. Hydroklimatische Veränderungen bieten aber auch eine Gelegenheit zum Testen von Theorien und Modellen, um somit die grundlegenden Zusammenhänge zu erkennen, welche nicht durch Änderungen der Randbedingungen hinfällig werden.
4

Land use effects and climate impacts on evapotranspiration and catchment water balance

Renner, Maik 13 January 2014 (has links)
Evapotranspiration ET is a dominant Earth System process that couples the water and energy cycles at the earth surface. The pressure of global environmental changes foster the broad scientific aim to understand impacts of climate and land-use on evapotranspiration under transient conditions. In this work, the spatial scale of river catchments is addressed through data analysis of hydrological and meteorological archives with ET classically derived through water balance closure. Through a synthesis of various catchments with different climatic forcings and hydrological conditions, the core objectives of this thesis are: - Did environmental changes in the past, such as climatic- or land-use and land cover (LULC) changes, result in detectable non-stationary changes in the hydro-climate time series? - How can the impacts of climatic- from LULC changes on the hydroclimatology of catchments be separated? - What are the factors that control the sensitivity of ET and streamflow to external changes? These research questions are addressed for the climatic scales of long-term annual averages and seasonal conditions which characterise the hydroclimatology of river catchments. Illustrated by a rich hydro-climatic archive condensed for 27 small to medium sized river catchments in Saxony, a method is proposed to analyse the seasonal features of river flow allowing to detect shifting seasons in snow affected river basins in the last 90 years. Observations of snow depth at these same times lead to the conclusion, that changes in the annual cycle of air temperature have a large influence on the timing of the freeze-thaw in late winter and early spring. This causes large changes in storage of water in the snow pack, which leads to profound changes of the river regime, particularly affecting the river flow in the following months. A model-based data analysis, based on the fundamental principles of water and energy conservation for long-term average conditions, is proposed for the prediction of ET and streamflow, as well as the separation of climate related impacts from impacts resulting from changes in basin conditions. The framework was tested on a large data set of river catchments in the continental US and is shown to be consistent with other methods proposed in the literature. The observed past changes highlight that (i) changes in climate, such as precipitation or evaporative demand, result in changes of the partitioning within the water and energy balance, (ii) the aridity of the climate and to a lesser degree basin conditions determine the sensitivity to external changes, (iii) these controlling factors influence the direction of LULC change impacts, which in some cases can be larger than climate impacts. This work provides evidence, that changes in climatic and land cover conditions can lead to transient hydrological behaviours and make stationary assumptions invalid. Hence, past changes present the opportunity for model testing and thereby deriving fundamental laws and concepts at the scale of interest, which are not affected by changes in the boundary conditions.:Kurzfassung Abstract List of Manuscripts Symbols and abbreviations List of Symbols List of abbreviations 1 Introduction 1.1 Motivation and relevance 1.1.1 Scientific importance of evapotranspiration 1.1.2 Pressure of human driven changes 1.1.3 Practical importance of evapotranspiration 1.2 Scope 1.2.1 Focus on the catchment scale 1.2.2 Changes in the hydroclimatology of river catchments 1.2.3 Hydro-climate data analysis 1.3 Objectives and research questions 1.3.1 Shifting seasons in hydrology 1.3.2 Long-term annual average changes of evapotranspiration and streamflow 1.3.3 Methodological requirements 1.4 Structure of the thesis 2 Long term variability of the annual hydrological regime 2.1 Introduction 2.1.1 Motivation 2.1.2 Seasonal changes in hydrologic records 2.1.3 Regional climate in Saxony 2.1.4 Objective and structure 2.2 Methods 2.2.1 Annual periodic signal extraction 2.2.2 The runoff ratio and its annual phase 2.2.3 Descriptive circular statistics 2.2.4 Detection of nonstationarities, trends and change points 2.3 Data 2.4.1 Estimation and variability of the timing of the runoff ratio 2.4.2 Temporal variability of the timing 2.4.3 Does temperature explain trends in seasonality of runoff ratio? 2.4.4 Trend analysis in snow dominated basins 2.4.5 Uncertainty and significance of the results 2.5 Conclusions 2.A Preparation of basin input data 2.A.1 Precipitation 2.A.2 Temperature and snow depth data 3 Evaluation of water-energy balance frameworks 3.1 Introduction 3.2 Theory 3.2.1 Coupled water and energy balance 3.2.2 The ecohydrologic framework for change attribution 3.2.3 Applying the climate change hypothesis to predict changes in basin evapo transpiration and streamflow 3.2.4 Derivation of climatic sensitivity using the CCUW hypothesis 3.2.5 The Budyko hypothesis and derived sensitivities 3.3 Sensitivity analysis 3.3.1 Mapping of the Budyko functions into UW space 3.3.2 Mapping CCUW into Budyko space 3.3.3 Climatic sensitivity of basin evapotranspiration and streamflow 3.3.4 Climate-vegetation feedback effects 3.4 Application: three case studies 3.4.1 Mississippi River Basin (MRB) 3.4.2 Headwaters of the Yellow River Basin (HYRB) 3.4.3 Murray-Darling River Basin (MDB) 3.5 Conclusions 3.5.1 Potentials and limitations 3.5.2 Insights on the catchment parameter 3.5.3 Validation 3.5.4 Perspectives 3.A Derivation of the climate change direction 4 Climate sensitivity of streamflow over the continental United States 4.1 Introduction 4.1.1 Motivation 4.1.2 Hydro-climate of the continental US 4.1.3 Aims and research questions 4.2 Methods 4.2.1 Ecohydrological concept to separate impacts of climate and basin changes 4.2.2 Streamflow change prediction based on a coupled water-energy balance framework 4.2.3 Streamflow change prediction based on the Budyko hypothesis 4.2.4 Statistical classification of potential climate and basin change impacts 4.3 Data 4.4 Results and discussion 4.4.1 Hydro-climate conditions in the US 4.4.2 Climate sensitivity of streamflow 4.4.3 Assessment of observed and predicted changes in streamflow 4.4.4 Uncertainty discussion 4.5 Conclusions 4.A Mathematical derivations for the Mezentsev function 5 Summary and conclusions 5.1 Shifting seasons in hydrology 5.1.1 Major findings 5.1.2 Socio-economic and political relevance 5.1.3 Limitations and possible directions for further research 5.2 Long-term annual changes in ET and streamflow 5.2.1 Major findings 5.2.2 Socio-economic and political relevance 5.2.3 Limitations and further research 5.3 General conclusions and outlook 5.3.1 Regional and temporal limits and validity 5.3.2 Hydrological records carry signals of climate and land use change 5.3.3 Statistical significance of past changes 5.3.4 Improvements in assessing ET 5.3.5 Remote sensing 5.3.6 Learning from the past to predict the future? Bibliography Danksagung Erklärung / Die Verdunstung ist ein maßgeblicher Prozess innerhalb des Klimasystems der Erde, welche den Wasserkreislauf mit dem Energiehaushalt der Erde verbindet. Eine zentrale wissenschaftliche Herausforderung ist, zu verstehen, wie die regionale Wasserverfügbarkeit durch Änderungen des Klimas oder der physiographischen Eigenschaften der Landoberfläche beeinflusst wird. Mittels einer integrierten Datenanalyse von vorhandenen langjährigen Archiven hydroklimatischer Zeitreihen werden die folgenden wissenschaftlichen Fragestellungen dieser Dissertation diskutiert: - Haben beobachtete Änderungen der Landoberfläche und des Klimas zu nachweisbaren, instationären hydroklimatischen Änderungen geführt? - Lassen sich die hydroklimatischen Auswirkungen von Klimaänderungen und Änderungen der Landoberfläche voneinander unterscheiden? - Welche Faktoren beeinflussen die Sensitivität von Abfluss und Verdunstung auf Veränderungen der klimatischen und physiographischen Randbedingungen? Hierbei fokussiert sich die Arbeit auf Änderungen im langjährige Mittel und im Jahresgang von hydroklimatischen Variablen auf der räumlichen Skala von Flusseinzugsgebieten. Zur Untersuchung des hydrologischen Regimes wurde ein harmonischer Filter angewandt, der es erlaubt, die Eintrittszeit des Jahresgangs (Phase) zu quantifizieren. Diese klimatologische Kenngröße wurde für eine Vielzahl von Einzugsgebieten in Sachsen untersucht, wobei sich vor allem für die Gebiete in den Kammlagen des Erzgebirges signifikante Veränderungen ergaben. Es konnte gezeigt werden, dass die signifikante Phasenverschiebung der Temperatur seit Ende der 1980er Jahre zu einer verfrühten Schneeschmelze und dadurch zu einem Rückgang des Abflusses bis in die Sommermonate hinein geführt hat. Desweiteren wurde eine modellbasierte Datenanalyse entwickelt, welche auf Massen- und Energieerhalt von Einzugsgebieten im langjährigen Mittel beruht. Das entwickelte Konzept erlaubt es, Auswirkungen von Klimaänderungen von anderen Effekten, welche z.B. durch Landnutzungsänderungen bedingt sind, abzugrenzen und zu quantifizieren. Die Ergebnisse einer Sensitivitätsanalyse dieses Konzeptes sowie die Anwendung auf einen umfangreichen hydroklimatischen Datensatz der USA zeigen: (i) Veränderungen im Wasser- oder Energiedargebot beeinflussen auch die Aufteilung der Wasser- und Energieflüsse. (ii) Die Aridität des Klimas und nachgeordnet die physiographischen Faktoren bestimmen die Sensitivität von Verdunstung und Abfluss. (iii) Beide Faktoren beeinflussen die Stärke und Richtung der Auswirkungen von physiographischen Änderungen. (iv) Anthropogene Veränderungen der Landoberfläche führten zum Teil zu stärkeren Auswirkungen als klimatisch bedingte Änderungen. Zusammenfassend zeigt sich, dass Änderungen von Landnutzung und Klima zu Verschiebungen im Wasserhaushalt führen können und damit auch die Annahme von Stationarität verletzen. Hydroklimatische Veränderungen bieten aber auch eine Gelegenheit zum Testen von Theorien und Modellen, um somit die grundlegenden Zusammenhänge zu erkennen, welche nicht durch Änderungen der Randbedingungen hinfällig werden.:Kurzfassung Abstract List of Manuscripts Symbols and abbreviations List of Symbols List of abbreviations 1 Introduction 1.1 Motivation and relevance 1.1.1 Scientific importance of evapotranspiration 1.1.2 Pressure of human driven changes 1.1.3 Practical importance of evapotranspiration 1.2 Scope 1.2.1 Focus on the catchment scale 1.2.2 Changes in the hydroclimatology of river catchments 1.2.3 Hydro-climate data analysis 1.3 Objectives and research questions 1.3.1 Shifting seasons in hydrology 1.3.2 Long-term annual average changes of evapotranspiration and streamflow 1.3.3 Methodological requirements 1.4 Structure of the thesis 2 Long term variability of the annual hydrological regime 2.1 Introduction 2.1.1 Motivation 2.1.2 Seasonal changes in hydrologic records 2.1.3 Regional climate in Saxony 2.1.4 Objective and structure 2.2 Methods 2.2.1 Annual periodic signal extraction 2.2.2 The runoff ratio and its annual phase 2.2.3 Descriptive circular statistics 2.2.4 Detection of nonstationarities, trends and change points 2.3 Data 2.4.1 Estimation and variability of the timing of the runoff ratio 2.4.2 Temporal variability of the timing 2.4.3 Does temperature explain trends in seasonality of runoff ratio? 2.4.4 Trend analysis in snow dominated basins 2.4.5 Uncertainty and significance of the results 2.5 Conclusions 2.A Preparation of basin input data 2.A.1 Precipitation 2.A.2 Temperature and snow depth data 3 Evaluation of water-energy balance frameworks 3.1 Introduction 3.2 Theory 3.2.1 Coupled water and energy balance 3.2.2 The ecohydrologic framework for change attribution 3.2.3 Applying the climate change hypothesis to predict changes in basin evapo transpiration and streamflow 3.2.4 Derivation of climatic sensitivity using the CCUW hypothesis 3.2.5 The Budyko hypothesis and derived sensitivities 3.3 Sensitivity analysis 3.3.1 Mapping of the Budyko functions into UW space 3.3.2 Mapping CCUW into Budyko space 3.3.3 Climatic sensitivity of basin evapotranspiration and streamflow 3.3.4 Climate-vegetation feedback effects 3.4 Application: three case studies 3.4.1 Mississippi River Basin (MRB) 3.4.2 Headwaters of the Yellow River Basin (HYRB) 3.4.3 Murray-Darling River Basin (MDB) 3.5 Conclusions 3.5.1 Potentials and limitations 3.5.2 Insights on the catchment parameter 3.5.3 Validation 3.5.4 Perspectives 3.A Derivation of the climate change direction 4 Climate sensitivity of streamflow over the continental United States 4.1 Introduction 4.1.1 Motivation 4.1.2 Hydro-climate of the continental US 4.1.3 Aims and research questions 4.2 Methods 4.2.1 Ecohydrological concept to separate impacts of climate and basin changes 4.2.2 Streamflow change prediction based on a coupled water-energy balance framework 4.2.3 Streamflow change prediction based on the Budyko hypothesis 4.2.4 Statistical classification of potential climate and basin change impacts 4.3 Data 4.4 Results and discussion 4.4.1 Hydro-climate conditions in the US 4.4.2 Climate sensitivity of streamflow 4.4.3 Assessment of observed and predicted changes in streamflow 4.4.4 Uncertainty discussion 4.5 Conclusions 4.A Mathematical derivations for the Mezentsev function 5 Summary and conclusions 5.1 Shifting seasons in hydrology 5.1.1 Major findings 5.1.2 Socio-economic and political relevance 5.1.3 Limitations and possible directions for further research 5.2 Long-term annual changes in ET and streamflow 5.2.1 Major findings 5.2.2 Socio-economic and political relevance 5.2.3 Limitations and further research 5.3 General conclusions and outlook 5.3.1 Regional and temporal limits and validity 5.3.2 Hydrological records carry signals of climate and land use change 5.3.3 Statistical significance of past changes 5.3.4 Improvements in assessing ET 5.3.5 Remote sensing 5.3.6 Learning from the past to predict the future? Bibliography Danksagung Erklärung
5

Reasons for the Underperformance of Clean Development Mechanism Project Activities in the Animal Waste Management Sector / An Analysis of Swine Manure treating Facilities in Latin America / Ursachen des geringen Erfolgs von Abwasserbehandlungsprojekten in der Tierproduktion im Rahmen des Clean Development Mechanism / Eine Analyse von Schweineproduktionsbetrieben in Lateinamerika

Deecke, Imme Dorothea 04 February 2010 (has links)
No description available.
6

Postglazialer Anstieg des Meeresspiegels, Paläoklima und Hydrographie, aufgezeichnet in Sedimenten der Bermuda inshore waters / Postglacial rise of sea level, palaeoclimate and hydrography, recorded in sediments of the Bermuda inshore waters

Vollbrecht, Rüdiger Dr. 13 January 1997 (has links)
No description available.

Page generated in 0.0665 seconds