• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polynomial root separation and applications

Pejkovic, Tomislav 20 January 2012 (has links) (PDF)
We study bounds on the distances of roots of integer polynomials and applications of such results. The separation of complex roots for reducible monic integer polynomials of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic setting are proved. Explicit families of polynomials of general degree as well as families in some classes of quadratic and cubic polynomials with very good separation of roots in the same setting are exhibited. The second part of the thesis is concerned with results on p-adic versions of Mahler's and Koksma's functions wn and w*n and the related classifications of transcendental numbers in Cp. The main result is a construction of numbers such that the two functions wn and w*n differ on them for every n and later on expanding the interval of possible values for wn-w*n. The inequalities linking values of Koksma's functions for algebraically dependent numbers are proved.
2

Polynomial root separation and applications

Pejkovic, Tomislav 20 January 2012 (has links) (PDF)
We study bounds on the distances of roots of integer polynomials and applications of such results. The separation of complex roots for reducible monic integer polynomials of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic setting are proved. Explicit families of polynomials of general degree as well as families in some classes of quadratic and cubic polynomials with very good separation of roots in the same setting are exhibited. The second part of the thesis is concerned with results on p-adic versions of Mahler's and Koksma's functions wn and w*n and the related classifications of transcendental numbers in Cp. The main result is a construction of numbers such that the two functions wn and w*n differ on them for every n and later on expanding the interval of possible values for wn-w*n. The inequalities linking values of Koksma's functions for algebraically dependent numbers are proved.
3

Polynomial root separation and applications / Séparation des racines des polynômes et applications

Pejkovic, Tomislav 20 January 2012 (has links)
Nous étudions les bornes sur les distances des racines des polynômes entiers et les applications de ces résultats. La séparation des racines complexes pour les polynômes réductibles normalisés de quatrième degré à coefficients entiers est examinée plus à fond. Différents lemmes sur les racines des polynômes en nombres p-adiques sont prouvés. Sont fournies les familles explicites de polynômes de degré général, ainsi que les familles dans certaines classes de polynômes quadratiques et cubiques avec une très bon separation des racins dans le cadre p-adique. Le reste de la thèse est dédié aux résultats liés aux versions p-adiques des fonctions de Mahler et de Koksma wn et w*n , ainsi qu'aux classifications correspondantes des nombres transcendants dans Cp. Le résultat principal est une construction des nombres pour lesquelles les deux fonctions wn et w*n sont différentes pour tous les n et puis l'intervalle de valeurs possibles pour wn-w*n est élargi. Les inégalités reliant les valeurs des fonctions de Koksma en nombres algébriquement dépendants sont prouvées. / We study bounds on the distances of roots of integer polynomials and applications of such results. The separation of complex roots for reducible monic integer polynomials of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic setting are proved. Explicit families of polynomials of general degree as well as families in some classes of quadratic and cubic polynomials with very good separation of roots in the same setting are exhibited. The second part of the thesis is concerned with results on p-adic versions of Mahler's and Koksma's functions wn and w*n and the related classifications of transcendental numbers in Cp. The main result is a construction of numbers such that the two functions wn and w*n differ on them for every n and later on expanding the interval of possible values for wn-w*n. The inequalities linking values of Koksma's functions for algebraically dependent numbers are proved.

Page generated in 0.0986 seconds