Spelling suggestions: "subject:"konvolutionella neural nätverk"" "subject:"konvolutionella neurala nätverk""
1 |
Estimation of Water Depth from Multispectral Drone Imagery : A suitability assessment of CNN models for bathymetry retrieval in shallow water areas / Uppskattning av vattendjup från multispektrala drönarbilder : En lämplighetsbedömning av CNN-modeller för att hämta batymetri i grunda vattenområden.Shen, Qianyao January 2022 (has links)
Aedes aegypti and Aedes albopictus are the main vector species for dengue disease and zika, two arboviruses that affect a substantial fraction of the global population. These mosquitoes breed in very slow-moving or standing pools of water, so detecting and managing these potential breeding habitats is a crucial step in preventing the spread of these diseases. Using high-resolution images collected by unmanned aerial vehicles (UAV) and their multispectral mapping data, this paper investigated bathymetry retrieval model in shallow water areas to help improve the habitat detection accuracy. While previous studies have found some success with shallow water bathymetry inversion on satellite imagery, accurate centimeter-level water depth regression from high-resolution, drone multispectral imagery still remains a challenge. Unlike previous retrieval methods generally relying on retrieval factor extraction and linear regression, this thesis introduced CNN methods, considering the nonlinear relationship between image pixel reflectance values and water depth. In order to look into CNN’s potential to retrieve shallow water depths from multispectral images captured by a drone, this thesis conducts a variety of case studies to respectively specify a proper CNN architecture, compare its performance in different datasets, band combinations, depth ranges and with other general bathymetry retrieval algorithms. In summary, the CNN-based model achieves the best regression accuracy of overall root mean square error lower than 0.5, in comparison with another machine learning algorithm, random forest, and 2 other semi-empirical methods, linear and ratio model, suggesting this thesis’s practical significance. / Aedes aegypti och Aedes albopictus är de viktigaste vektorarterna för dengue och zika, två arbovirus som drabbar en stor del av den globala befolkningen. Dessa myggor förökar sig i mycket långsamt rörliga eller stillastående vattensamlingar, så att upptäcka och hantera dessa potentiella förökningsmiljöer är ett avgörande steg för att förhindra spridningen av dessa sjukdomar. Med hjälp av högupplösta bilder som samlats in av obemannade flygfarkoster (UAV) och deras multispektrala kartläggningsdata undersöktes i den här artikeln en modell för att hämta batymetri i grunda vattenområden för att förbättra noggrannheten i upptäckten av livsmiljöer. Även om tidigare studier har haft viss framgång med inversion av bathymetri på grunt vatten med hjälp av satellitbilder, är det fortfarande en utmaning att göra en exakt regression av vattendjupet på centimeternivå från högupplösta, multispektrala bilder från drönare. Till skillnad från tidigare metoder som i allmänhet bygger på extrahering av återvinningsfaktorer och linjär regression, infördes i denna avhandling CNN-metoder som tar hänsyn till det icke-linjära förhållandet mellan bildpixlarnas reflektionsvärden och vattendjupet. För att undersöka CNN:s potential att hämta grunda vattendjup från multispektrala bilder som tagits av en drönare genomförs i denna avhandling en rad fallstudier för att specificera en lämplig CNN-arkitektur, jämföra dess prestanda i olika datamängder, bandkombinationer, djupintervall och med andra allmänna algoritmer för att hämta batymetri. Sammanfattningsvis uppnår den CNN-baserade modellen den bästa regressionsnoggrannheten med ett totalt medelkvadratfel som är lägre än 0,5, i jämförelse med en annan maskininlärningsalgoritm, random forest, och två andra halvempiriska metoder, linjär och kvotmodell, vilket tyder på den praktiska betydelsen av denna avhandling.
|
2 |
Algorithm Design and Optimization of Convolutional Neural Networks Implemented on FPGAsDu, Zekun January 2019 (has links)
Deep learning develops rapidly in recent years. It has been applied to many fields, which are the main areas of artificial intelligence. The combination of deep learning and embedded systems is a good direction in the technical field. This project is going to design a deep learning neural network algorithm that can be implemented on hardware, for example, FPGA. This project based on current researches about deep learning neural network and hardware features. The system uses PyTorch and CUDA as assistant methods. This project focuses on image classification based on a convolutional neural network (CNN). Many good CNN models can be studied, like ResNet, ResNeXt, and MobileNet. By applying these models to the design, an algorithm is decided with the model of MobileNet. Models are selected in some ways, like floating point operations (FLOPs), number of parameters and classification accuracy. Finally, the algorithm based on MobileNet is selected with a top-1 error of 5.5%on software with a 6-class data set.Furthermore, the hardware simulation comes on the MobileNet based algorithm. The parameters are transformed from floating point numbers to 8-bit integers. The output numbers of each individual layer are cut to fixed-bit integers to fit the hardware restriction. A number handling method is designed to simulate the number change on hardware. Based on this simulation method, the top-1 error increases to 12.3%, which is acceptable. / Deep learning har utvecklats snabbt under den senaste tiden. Det har funnit applikationer inom många områden, som är huvudfälten inom Artificial Intelligence. Kombinationen av Deep Learning och innbyggda system är en god inriktning i det tekniska fältet. Syftet med detta projekt är att designa en Deep Learning-baserad Neural Network algoritm som kan implementeras på hårdvara, till exempel en FPGA. Projektet är baserat på modern forskning inom Deep Learning Neural Networks samt hårdvaruegenskaper.Systemet är baserat på PyTorch och CUDA. Projektets fokus är bild klassificering baserat på Convolutional Neural Networks (CNN). Det finns många bra CNN modeller att studera, t.ex. ResNet, ResNeXt och MobileNet. Genom att applicera dessa modeller till designen valdes en algoritm med MobileNetmodellen. Valet av modell är baserat på faktorer så som antal flyttalsoperationer, antal modellparametrar och klassifikationsprecision. Den mjukvarubaserade versionen av den MobileNet-baserade algoritmen har top-1 error på 5.5En hårdvarusimulering av MobileNet nätverket designades, i vilket parametrarna är konverterade från flyttal till 8-bit heltal. Talen från varje lager klipps till fixed-bit heltal för att anpassa nätverket till befintliga hårdvarubegränsningar. En metod designas för att simulera talförändringen på hårdvaran. Baserat på denna simuleringsmetod reduceras top-1 error till 12.3
|
3 |
Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network : Bildklassificering för hjärntumör medhjälp av förtränat konvolutionell tneuralt nätverkOsman, Ahmad, Alsabbagh, Bushra January 2023 (has links)
Brain tumor is a disease characterized by uncontrolled growth of abnormal cells inthe brain. The brain is responsible for regulating the functions of all other organs,hence, any atypical growth of cells in the brain can have severe implications for itsfunctions. The number of global mortality in 2020 led by cancerous brains was estimatedat 251,329. However, early detection of brain cancer is critical for prompttreatment and improving patient’s quality of life as well as survival rates. Manualmedical image classification in diagnosing diseases has been shown to be extremelytime-consuming and labor-intensive. Convolutional Neural Networks (CNNs) hasproven to be a leading algorithm in image classification outperforming humans. Thispaper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7,and ResNet-50 in terms of performance and accuracy using transferlearning. In addition, the authors discussed in this paper the economic impact ofCNN, as an AI approach, on the healthcare sector. The models’ performance isdemonstrated using functions for loss and accuracy rates as well as using the confusionmatrix. The conducted experiment resulted in VGG-19 achieving best performancewith 97% accuracy, while EffecientNetB7 achieved worst performance with93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormalaceller i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ,därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dessfunktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandlingoch för att förbättra patienternas livskvalitet och överlevnadssannolikhet.Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sigvara extremt tidskrävande och arbetskrävande. Convolutional Neural Network(CNN) är en ledande algoritm för bildklassificering som har överträffat människor.Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet,EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterarförfattarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellensprestanda demonstrerades med hjälp av funktioner om förlust och noggrannhetsvärden samt med hjälp av en Confusion matris. Resultatet av det utfördaexperimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet,medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.
|
4 |
Classification of ultrasonic signals using machine learning to identify optimal frequency for elongation control : Threaded fastening toolsBahy, Mazen January 2022 (has links)
Studying the preload in a screw joint has been the focus of today’s industry. The manufacturer reflects that demand by investigating different opportunities and techniques to develop this area. There are four different ways of controlling the tightening of bolts and joints to achieve the required clamp force that can hold for a specific preload. Torque control, angle control, gradient control, and ultrasonic clamp-force or elongation control. Many studies do exist about the first three mentioned techniques. However, there are a small number of studies for the ultrasonic clamp-force technique, and there is no study focusing on the usage of machine learning in that technique. This study investigates the use of machine learning to find the optimal frequency used to transmit the ultrasonic signals into the bolt for calculating the bolt elongation. Two machine learning models have been constructed, presenting two approaches: one for one-dimensional data (1D-CNN) and one for two-dimensional data (2D-CNN). The models classify the received signals (echos) with different frequencies into either accepted or non-accepted signals to get the optimal frequencies to be used later on, in the bolt elongation process. Both the 1D-CNN and 2D-CNN show an accepted performance of around 85% accuracy. The results indicate that there does exist a pattern in these ultrasonic signals that are useful for classifying them into accepted and non-accepted frequencies, so the usage of machine learning for the problem is feasible. / Att studera förspänningen i en skruvförband har varit i fokus för dagens industri. Tillverkaren speglar den efterfrågan genom att undersöka olika möjligheter och tekniker för att utveckla detta område. Det finns fyra olika sätt att kontroller åtdragningen av bultar för att uppnå den erforderliga klämkraften som kan hålla för en specifik förspänning. Vridmomentkontroll, vinkelkontroll, gradientkontroll och ultraljudskontroll av klämkraft. Det finns många studier om de tre förstnämnda teknologier. Det finns dock ett litet antal studier för ultraljudsklämkraftstekniken, och det finns ingen studie som fokuserar på användningen av maskininlärning i den tekniken. Denna studie undersöker användningen av maskininlärning för att hitta den optimala frekvensen som används för att beräkna bultens förlängning. Två maskininlärningsmodeller har konstruerats, som presenterar två metoder: en för endimensionell data (1D-CNN) och en för två-dimensionella data (2D-CNN). Modellerna klassificerar de mottagna signalerna (ekon) med olika frekvenser i antingen accepterade eller icke-accepterade signaler för att få de optimala frekvenserna att användas senare, i bultförlängningsprocessen. Både 1D-CNN och 2D-CNN visar en accepterad prestanda på cirka 85% noggrannhet. Resultaten indikerar att det finns ett mönster i dessa ultraljudssignaler som är användbara för att klassificera dem i accepterade och icke-accepterade frekvenser, så användningen av maskininlärning för problemet är genomförbar.
|
5 |
Image-classification for Brain Tumor using Pre-trained Convolutional Neural Network / Bildklassificering för hjärntumör med hjälp av förtränat konvolutionellt neuralt nätverkAlsabbagh, Bushra January 2023 (has links)
Brain tumor is a disease characterized by uncontrolled growth of abnormal cells in the brain. The brain is responsible for regulating the functions of all other organs, hence, any atypical growth of cells in the brain can have severe implications for its functions. The number of global mortality in 2020 led by cancerous brains was estimated at 251,329. However, early detection of brain cancer is critical for prompt treatment and improving patient’s quality of life as well as survival rates. Manual medical image classification in diagnosing diseases has been shown to be extremely time-consuming and labor-intensive. Convolutional Neural Networks (CNNs) has proven to be a leading algorithm in image classification outperforming humans. This paper compares five CNN architectures namely: VGG-16, VGG-19, AlexNet, EffecientNetB7, and ResNet-50 in terms of performance and accuracy using transfer learning. In addition, the authors discussed in this paper the economic impact of CNN, as an AI approach, on the healthcare sector. The models’ performance is demonstrated using functions for loss and accuracy rates as well as using the confusion matrix. The conducted experiment resulted in VGG-19 achieving best performance with 97% accuracy, while EffecientNetB7 achieved worst performance with 93% accuracy. / Hjärntumör är en sjukdom som kännetecknas av okontrollerad tillväxt av onormala celler i hjärnan. Hjärnan är ansvarig för att styra funktionerna hos alla andra organ, därför kan all onormala tillväxt av celler i hjärnan ha allvarliga konsekvenser för dess funktioner. Antalet globala dödligheten ledda av hjärncancer har uppskattats till 251329 under 2020. Tidig upptäckt av hjärncancer är dock avgörande för snabb behandling och för att förbättra patienternas livskvalitet och överlevnadssannolikhet. Manuell medicinsk bildklassificering vid diagnostisering av sjukdomar har visat sig vara extremt tidskrävande och arbetskrävande. Convolutional Neural Network (CNN) är en ledande algoritm för bildklassificering som har överträffat människor. Denna studie jämför fem CNN-arkitekturer, nämligen VGG-16, VGG-19, AlexNet, EffecientNetB7, och ResNet-50 i form av prestanda och noggrannhet. Dessutom diskuterar författarna i studien CNN:s ekonomiska inverkan på sjukvårdssektorn. Modellens prestanda demonstrerades med hjälp av funktioner om förlust och noggrannhets värden samt med hjälp av en Confusion matris. Resultatet av det utförda experimentet har visat att VGG-19 har uppnått bästa prestanda med 97% noggrannhet, medan EffecientNetB7 har uppnått värsta prestanda med 93% noggrannhet.
|
6 |
Semantic segmentation of off-road scenery on embedded hardware using transfer learning / Semantisk segmentering av terränglandskap på inbyggda system med överförd lärandeElander, Filip January 2021 (has links)
Real-time semantic scene understanding is a challenging computer vision task for autonomous vehicles. A limited amount of research has been done regarding forestry and off-road scene understanding, as the industry focuses on urban and on-road applications. Studies have shown that Deep Convolutional Neural Network architectures, using parameters trained on large datasets, can be re-trained and customized with smaller off-road datasets, using a method called transfer learning and yield state-of-the-art classification performance. This master’s thesis served as an extension of such existing off-road semantic segmentation studies. The thesis focused on detecting and visualizing the general trade-offs between classification performance, classification time, and the network’s number of available classes. The results showed that the classification performance declined for every class that got added to the network. Misclassification mainly occurred in the class boundary areas, which increased when more classes got added to the network. However, the number of classes did not affect the network’s classification time. Further, there was a nonlinear trade-off between classification time and classification performance. The classification performance improved with an increased number of network layers and a larger data type resolution. However, the layer depth increased the number of calculations and the larger data type resolution required a longer calculation time. The network’s classification performance increased by 0.5% when using a 16-bit data type resolution instead of an 8-bit resolution. But, its classification time considerably worsened as it segmented about 20 camera frames less per second with the larger data type. Also, tests showed that a 101-layered network slightly degraded in classification performance compared to a 50-layered network, which indicated the nonlinearity to the trade-off regarding classification time and classification performance. Moreover, the class constellations considerably impacted the network’s classification performance and continuity. It was essential that the class’s content and objects were visually similar and shared the same features. Mixing visually ambiguous objects into the same class could drop the inference performance by almost 30%. There are several directions for future work, including writing a new and customized source code for the ResNet50 network. A customized and pruned network could enhance both the application’s classification performance and classification speed. Further, procuring a task-specific forestry dataset and transferring weights pre-trained for autonomous navigation instead of generic object segmentation could lead to even better classification performance. / Se filen
|
7 |
Development of a Software Reliability Prediction Method for Onboard European Train Control SystemLongrais, Guillaume Pierre January 2021 (has links)
Software prediction is a complex area as there are no accurate models to represent reliability throughout the use of software, unlike hardware reliability. In the context of the software reliability of on-board train systems, ensuring good software reliability over time is all the more critical given the current density of rail traffic and the risk of accidents resulting from a software malfunction. This thesis proposes to use soft computing methods and historical failure data to predict the software reliability of on-board train systems. For this purpose, four machine learning models (Multi-Layer Perceptron, Imperialist Competitive Algorithm Multi-Layer Perceptron, Long Short-Term Memory Network and Convolutional Neural Network) are compared to determine which has the best prediction performance. We also study the impact of having one or more features represented in the dataset used to train the models. The performance of the different models is evaluated using the Mean Absolute Error, Mean Squared Error, Root Mean Squared Error and the R Squared. The report shows that the Long Short-Term Memory Network is the best performing model on the data used for this project. It also shows that datasets with a single feature achieve better prediction. However, the small amount of data available to conduct the experiments in this project may have impacted the results obtained, which makes further investigations necessary. / Att förutsäga programvara är ett komplext område eftersom det inte finns några exakta modeller för att representera tillförlitligheten under hela programvaruanvändningen, till skillnad från hårdvarutillförlitlighet. När det gäller programvarans tillförlitlighet i fordonsbaserade tågsystem är det ännu viktigare att säkerställa en god tillförlitlighet över tiden med tanke på den nuvarande tätheten i järnvägstrafiken och risken för olyckor till följd av ett programvarufel. I den här avhandlingen föreslås att man använder mjuka beräkningsmetoder och historiska data om fel för att förutsäga programvarans tillförlitlighet i fordonsbaserade tågsystem. För detta ändamål jämförs fyra modeller för maskininlärning (Multi-Layer Perceptron, Imperialist Competitive Algorithm Mult-iLayer Perceptron, Long Short-Term Memory Network och Convolutional Neural Network) för att fastställa vilken som har den bästa förutsägelseprestandan. Vi undersöker också effekten av att ha en eller flera funktioner representerade i den datamängd som används för att träna modellerna. De olika modellernas prestanda utvärderas med hjälp av medelabsolut fel, medelkvadratfel, rotmedelkvadratfel och R-kvadrat. Rapporten visar att Long Short-Term Memory Network är den modell som ger bäst resultat på de data som använts för detta projekt. Den visar också att dataset med en enda funktion ger bättre förutsägelser. Den lilla mängd data som fanns tillgänglig för att genomföra experimenten i detta projekt kan dock ha påverkat de erhållna resultaten, vilket gör att ytterligare undersökningar är nödvändiga.
|
Page generated in 0.1389 seconds