Spelling suggestions: "subject:"utopija"" "subject:"entropija""
1 |
Parcijalna uredjenja izomorfnih podstruktura relacijskih stuktura / Partial orders of isomorphic substructures of relational structuresKuzeljević Boriša 02 June 2014 (has links)
<p>Cilj ove teze je da se ispitaju lanci u parcijalnim uredjenjima (P(X), ⊂), pri čemu je P(X) skup domena izomorfnih podstruktura relacijske strukture X. Pošto se svaki lanac u parcijalnom uredjenju može produžiti do maksimalnog lanca, dovoljno je ispitati maksimalne lance u P(X). Dokazano je da, ako je X ultrahomogena relacijska struktura koja ima netrivijalne izomorfne podstrukture, onda je svaki maksimalan lanac u (P(X) ∪ {∅} , ⊂) kompletno linearno uredjenje koje se utapa u R i ima neizolovan minimum. Ako je X relacijska struktura, dat je dovoljan uslov da za svako kompletno linearno uredjenje L koje se utapa u R i ima neizolovan minimum, postoji maksimalan lanac u (P(X) ∪ {∅} , ⊂) izomorfan L. Dokazano je i da ako je X neka od sledećih relacijskih struktura: Rado graf, Hensonov graf, random poset, ultrahomogeni poset Bn ili ultrahomogeni poset Cn; onda je L izomorfno maksimalnom lancu u (P(X) ∪ {∅} , ⊂) ako i samo ako je L kompletno, utapa se u R i ima neizolovan minimum. Ako je X prebrojiv antilanac ili disjunktna unija µ kompletnih grafova sa ν tačaka za µν = ω, onda je L izomorfno maksimalnom lancu u (P(X) ∪ {∅} , ⊂) ako i samo ako je bulovsko, utapa se u R i ima neizolovan minimum.</p> / <p>The purpose of this thesis is to investigate chains in partial orders (P(X), ⊂), where P(X) is the set of domains of isomorphic substructures of a relational structure X. Since each chain in a partial order can be extended to a maximal one, it is enough to describe maximal chains in P(X). It is proved that, if X is an ultrahomogeneous relational structure with non-trivial isomorphic substructures, then each maximal chain in (P(X)∪ {∅} , ⊂) is a complete, R-embeddable linear order with minimum non-isolated. If X is a relational structure, a condition is given for X, which is sufficient for (P(X) ∪ {∅} , ⊂) to embed each complete, R-embeddable linear order with minimum non-isolated as a maximal chain. It is also proved that if X is one of the follow- ing relational structures: Rado graph, Henson graph, random poset, ultrahomogeneous poset Bn or ultrahomogeneous poset Cn; then L is isomorphic to a maximal chain in (P(X) ∪ {∅} , ⊂) if and only if L is complete, R-embeddable with minimum non-isolated. If X is a countable antichain or disjoint union of µ complete graphs with ν points where µν = ω, then L is isomorphic to a maximal chain in (P(X) ∪ {∅} , ⊂) if and only if L is Boolean, R-embeddable with minimum non-isolated.</p>
|
2 |
Judesių variabilumas atliekant šuolius į aukštį iš vietos / The variability of movement during the vertical standing jumpsDrebulys, Gintaras 15 May 2006 (has links)
The aim of the study – To determine and assess the variability of movements during the vertical standing jumps with and without the regressive information. Subjects: The subjects were healthy men who cultivate triathlon (age 19-20 years; n = 10). The objectives: to identify and evaluate the variability of vertical jumps when the jumps are performed at 50% of maximal intensity without using the backward information; to identify and evaluate the variability of vertical jumps when the jumps are performed at 50% of maximum with the regressive information about the accuracy of jump; to identify and evaluate the variability of vertical jumps when the jumps are performed at 30% of maximum (before and after the workload) and at maximal intensity (workload) without the use of regressive information; to evaluate the variability of vertical jumps when the jumps are performed at 30% of maximum (before and after the workload) and at maximal intensity (workload) with the backward information for the control jumps. The main conclusions of the study are the following: During the vertical jumps at 50 % of maximum, we have determined similar repetition of vertical jump. This similarity of vertical jumps’ accuracy was determined during the jumps before the workload, during the workload, and after the workload; The repetition of the similar vertical jump depended on the delivery of regressive information: first two jumps with the backward information were significantly increased in comparison to... [to full text]
|
Page generated in 0.0314 seconds