• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rekommenderad framledningstemperatur i fjärrvärmenät baserat på rökgaskondensering : En beräkningsundersökning av rökgaskondensering och fjärrvärme i en medelstor svensk stad

Hwit, Emil January 2019 (has links)
Fjärrvärme är den vanligaste uppvärmningsformen i Sverige och mer än hälften av alla lokaler och bostäder får sin uppvärmning från gemensamma fjärrvärmeanläggningar. Rökgaskondensering producerar 11 % av all fjärrvärme vilket gör den till den tredje största fjärrvärmeproducenten i Sverige. Det är därför är det viktig att den är så effektiv som möjligt. För att öka effektiviteten i förbränningsanläggningar i fjärrvärmesystem kan rökgaskondensering installeras i sammanband med de flesta bränslen som avger fuktig ånga. Rökgaskondenseringen har en viktig roll i samhället då den tar vara på energi som annars skulle gå förlorad samtidigt som den kan rena avgaserna från förorenade utsläpp. Borlänge‑Energi äger ett rökgaskondenseringssystem på Stora Enso Kvarnsvedens Pappersbruk. De vill nu utreda om deras rökgaskondenseringssystem körs så effektivt som den skulle kunna göra. Den här rapporten undersöker därför hur driften påverkas av förändrade fram- och returledningstemperaturer samt vad produktionskostnadsförändringarna på den producerade värme blir. Beräkningar har genomförts med hjälp av fjärrvärmevattnets densitet, specifikvärmekapacitet, flödes- och temperaturskillnad i Excel. Alla beräkningar har utgått från medianvärdet för månaden och sedan jämförts med vad som händer vid förändrad fram‑ och returledningstemperatur. Som underlag för beräkningarna har data insamlad under perioden januari 2015 och december 2018 använts. Resultatet visar att öka framledningstemperaturen till 95 °C från medianframledningstemperaturerna för respektive månad, det vill säga från temperaturintervall på 79 – 88 °C till 95 °C, ökar energikostnaderna med cirka 2,5 miljoner SEK per år. Kostnaden kan minskas med 400 000 SEK/år genom att sänka returledningstemperaturen till 40 °C. Minskas istället framledningstemperaturen till 75 °C när utomhustemperaturen är varmare än ‑1 °C, minskar de nuvarande energikostnaderna. En minskad framledningstemperatur ger även minskade förluster i ledningarna, minskat slitage, minskad bränsleförbrukning och minskade utsläpp. Temperatursänkning till 75 °C från temperaturintervallet 79 – 88 °C kan minska kostnaderna med 620 000 SEK per år. Skulle returledningstemperaturen sänkas men framledningstemperaturen bibehållas som den är idag kan en kostnadsminskning på över 400 000 SEK nås. Genom att sänka både fram- och returledningstemperaturerna kan en kostnadssparning på över 1 miljon SEK per år ske. Den framledningstemperatur som rekommenderas att Borlänge‑Energi strävar efter är: 75 °C när utomhustemperaturen är varmare än -1 °C 80 °C mellan -2 och -4 °C 85 °C vid -5 °C 90 °C mellan -6 och ‑7 °C 95 °C mellan -8 och -11 °C / The most common way of heating buildings in Sweden is by district heating, more than half of all the locales and homes is heated this way. Flue gas condensation is the third largest contributor of energy in district heating at 11 %. The importance of its efficiency is thereby big. Flue gas condensation can be installed at combustion boilers to increase the efficiency, it can be used in combination with most fuels that exhaust steam. The flue gas condensation has an important role by harnessing the energy in flue gases and cleansing it from environmental hazards. The flue gas condensation unit on Stora Enso Kvarnsveden Mill is owned by Borlänge‑Energi. They want to know if the condenser is operating as effective as it could be. This report investigates how the condenser and external heater at Stora Enso Kvarnsveden Mill is affected by different supply and return temperatures as well as what the production costs of the energy is. The calculations have been accomplished by using the density, specific heat capacity, flow- and temperature differences in Excel. All the calculations have originated from the median value for each month and used in comparison. The basis of the calculations is data that has been collected in the period of January 2015 to December 2018. The results indicate that increasing the supply temperature to 95 °C increases the energy costs by about 2 500 000 SEK per year. These costs can be reduced by 400 000 SEK per year by decreasing the return temperature to 40 °C. If the supply temperature is instead decreased to 75 °C when the temperature outside is higher than -1 °C, the costs decreases. A low supply temperature leads to less wear on the pipes, less heat losses, less fuel consumption and less emissions. This temperature reduction can decrease the costs by 620 000 SEK per year. If the return temperature is reduced but the supply temperature retained as it is today the costs could decrease by over 400 000 SEK per year. And by reducing both the supply and return temperature a cost saving of over 1 000 000 SEK per year could be achieved. The recommendation is therefore a lowering of the supply temperature to 75 °C when the temperature outside is warmer than -1 °C. The recommended supply temperature is: 75 °C when the temperature outside is warmer than -1 °C 80 °C between -2 and -4 °C 85 °C at -5 °C, 90 °C between -6 and ‑7 °C 95 °C between -8 and -11 °C

Page generated in 0.0492 seconds