Spelling suggestions: "subject:"laminated""
1 |
The prediction and control of failure in layered brittle materialsPhillipps, Andrew James January 1993 (has links)
No description available.
|
2 |
Effect of pre-stress on wave-propagation in incompressible layered mediaSandiford, Kevin John January 1998 (has links)
No description available.
|
3 |
Damage accumulation in cross-ply polymer matrix composite laminates under mechanical loadingLeong, Kok Hoong January 1992 (has links)
No description available.
|
4 |
Finite elements applied to crack tip singularitiesFawkes, A. J. January 1976 (has links)
No description available.
|
5 |
Residual stresses in laminated thermoplastic matrix compositesParkyn, A. T. January 1988 (has links)
No description available.
|
6 |
A multi-scale method for the prediction of delamination in electronic packages /Fan, Haibo. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references. Also available in electronic version.
|
7 |
Rapid prototyping using high speed selective jet electrodepositionDover, Stephen James January 2000 (has links)
No description available.
|
8 |
Innovative laminate structures for tubular elementsPostma, Tiemen Rudolf January 2012 (has links)
The performance of peristaltic pumps is mainly governed by their tubing or hose materials. Research and development in this area is therefore very important for peristaltic pump manufacturers to keep in front of the competition and to open up new applications to enable further market penetration. Another aspect of this is of course price; performance and cost have to be in balance. As an approach to fabricate a new tube material, the field of negative Poisson's ratio (or: auxetic) materials is explored. The combined deformations of tensile, compression and shear in a peristaltic pump tube may well benefit from the specific characteristics of auxetic materials. Materials can be designed to keep their dimensions constant in directions perpendicular to an applied load. This is referred to as “auxetic balancing”. Finite element modelling shows that lowering the Poisson's ratio will rapidly decrease the maximum stresses in the cross-section of an occluded tube. Optimum values for the Poisson's ratio are found to be between −0.1 and +0.1, preferentially being 0. The re-entrant honeycomb structure is selected for initial trials, but manufacturing of this structure at the desired dimension proved to be too difficult at this time. Instead, electrospun nanofibre membranes are selected as the reinforcement structure. A liquid silicone elastomer is used as the matrix material. Key characteristics for the new material are derived from baseline test results on existing tubing. Laminates are manufactured from electrospun nylon6 nanofibre membranes coated with a liquid silicone rubber. Compression moulding is used to cure the nylon6-silicone rubber laminate, to give two effects: it ensures impregnation of the membrane and the compression deforms the nanofibre structure in such a way that it will become auxetic through-the-thickness. Flat sheet laminates of 2 mm thickness are manufactured with 14 layers of reinforcement. A reinforcing effect and substantial lowering of the through-the-thickness Poisson's ratio is observed for the laminates at low strains. At higher strains (>50%) the effect of the reinforcement diminishes and the Poisson's ratio of the laminate and pure silicone rubber equalises. Finally, tubular laminates are manufactured and the resulting tubes are tested in a peristaltic pump with some promising results (>1 million occlusions before failure). Tube performance is not yet at the required level, but with further optimisation of the laminating process, mould design and (post-)curing large steps forward can be made.
|
9 |
Effect of Z-Fiber® pinning on the mechanical properties of carbon fibre/epoxy compositesTroulis, Emmanouil January 2003 (has links)
This study investigates the effects of Z-pinning on the delamination performance in opening and shear loading modes in woven fabric reinforced / epoxy composite materials, as well as the effects of friction between specimen crack faces and the Z-pin failure mechanisms involved in mode II delamination. Mode I and mode II delamination tests are carried out on Z-pinned unidirectional (UD) and woven laminates. Both UD and woven laminates exhibit enhanced delamination resistance and crack propagation stability through Z-pinning. The effects of various structural and Z-pin parameters on the mode I and mode II delamination behaviour are separately assessed. The 4ENF testing configuration is deemed as the appropriate mode II configuration for the testing of Z-pinned laminates. A new basic friction rig is used to measure the friction coefficient between crack faces in woven laminates. An additional friction effect attributed to fibre architecture is identified. A specially designed delamination specimen is used to overcome the difficulty of accurately measuring crack propagation in Z-pinned woven fabric materials and aid data reduction using the available analytical methods. The failure mechanisms involved in the mode II delamination of Z-pinned laminates have been investigated with the implementation of a new test. Z-pins fail under shear loading through a combination of resin crushing, laminate fibre breakage, pin shear, pin bending and pin pullout. The balance of the failure mechanisms is shown to be a function of the crack opening constraint, material type, stacking sequence, Z-pin angle and insertion depth to Z-pin diameter ratio. Z-pin and material parameters influencing Z-pinning quality are identified, categorised and quantified. The importance of controlling Z-pin insertion depth is underlined and updated manufacturing procedures are proposed. Partial pinning appears as an advantageous alternative. A reduction in in-plane stiffness and in-plane strength in UD and woven fabric composites is measured, whilst no significant change of in-plane shear stiffness of UD materials is observed. A reduction in the fibre volume fraction is the single most important parameter affecting the in-plane stiffness. The performance of a Z-pinned sub-structural component is investigated. Enhanced loading carrying capacity and damage tolerance is achieved through Z-pinning.
|
10 |
Low velocity edge impact on composite laminates : damage tolerance and numerical simulationsMalhotra, Anjum January 2014 (has links)
Composite laminates are increasingly being used in more complex structural applications where edges and cut outs are inevitable. These applications include wing skins of military and civil aircraft, further aerospace applications as well as automotive panels and critical structures. Composite components in such applications are highly susceptible to damage. Composites behave in a different manner to conventional metallic materials, which has introduced several design problems not previously encountered. One such problem has been the susceptibility of the material to accidental low energy impacts which frequently leave no visible mark on the impacted surface but considerable internal damage. Investigation of the residual strength and stiffness of composites after edge impact has become important for the design of aerospace components. Previously, the research work involved central impact of composite laminates but in this research we are investigating edge impact behaviour of composite laminates as parts of composite structures are particularly vulnerable to impacts, including near the edge of an inspection port or other aperture. Furthermore, impacts to such areas may lead to more severe damage near the edge of the laminate rather than the surface. Thus the present work extends these investigations to impact on the edge of composite laminates. The thesis includes both experimental investigations and finite element simulations of impact damage on the plane of the laminate near the edge (near-edge), and on the edge (on-edge) of composite laminates. A comparison with centre impact with on and near-edge impact is done to understand the damage on the edges and away from the edges. A new design has been developed and implemented to perform edge impact experiments. The research investigated the effects of various parameters like thickness, absorbed energies, force-time histories and damage behaviour of composite laminate. The damage size and mechanisms have been explored. Impact simulation was carried out using finite element code Abaqus. Explicit solution technique of the code was used to analyse the edge impact phenomenon. Results of the finite element analysis were compared with experiments. The residual strength of the laminates under compressive and tensile loading has been measured. Tensions after impact (TAI) tests were conducted to evaluate the residual load carrying capacity. The effect of edge impact on the low velocity impact response and the residual tensile strength is discussed via the test results. This thesis also includes computed tomography as the main technique for micro level damage characterisation and investigates the study of damage mechanisms of glass/epoxy laminates subjected to edge impact with varying energy levels and thickness. Computed Tomography aims to provide damage behaviour such as internal damage state, delaminations during different types of edge impact.
|
Page generated in 0.048 seconds