• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et étude du rôle de lamp2a chez les poissons / Characterization and study of the role of lamp2a in fish

Lescat, Laury 03 December 2019 (has links)
L’Autophagie médiée par les protéines chaperonnes (ou CMA pour Chaperone-Mediated Autophagy) est une voie majeure du catabolisme lysosomal considérée aujourd’hui comme un acteur central de contrôle de nombreuses fonctions cellulaires, et dont les défauts sont associés à plusieurs pathologies humaines, dont des maladies neurodégénératives, des cancers et des troubles du système immunitaire. Selon l’idée actuellement admise, cette fonction cellulaire n’existerait que chez les mammifères ou les oiseaux, qui seraient les seuls à exprimer la protéine LAMP2A, une protéine nécessaire au fonctionnement de la CMA. Or, récemment, nous avons pu mettre en évidence l’existence de séquences exprimées présentant une forte homologie avec LAMP2A de mammifères chez plusieurs espèces de poissons, remettant ainsi en question ce point de vue et suggérant que la CMA soit apparue beaucoup plus tôt au cours de l'évolution qu'on ne l'avait initialement cru. Dans cette thèse, nous retraçons l’histoire évolutive du gène LAMP2 chez les vertébrés. Nous démontrons que ce gène est apparu après la seconde duplication complète du génome survenue chez l'ancêtre commun des vertébrés il y a environ 500 millions d'années. En outre, en adaptant une méthode récemment décrite pour mesurer l’activité de la CMA dans des cellules de mammifères à une lignée de fibroblastes de medaka (Oryzias latipes), nous apportons la preuve de l’existence de cette fonction cellulaire chez cette espèce de poisson. Enfin, afin de caractériser le rôle physiologique de cette fonction chez les poissons, nous avons procédé à l’invalidation par crispR-cas9 de lamp2a chez le medaka. Les poissons générés présentaient de sévères perturbations du métabolisme intermédiaire, comme précédemment décrit chez des souris dont LAMP2A a été invalidée dans le foie. Dans l’ensemble, ces résultats démontrent clairement, et pour la toute première fois, qu’il existe bien une activité CMA fonctionnelle chez les poissons, et apportent ainsi de nouvelles perspectives dans ce domaine de recherche, notamment en autorisant l'utilisation de modèles génétiques complémentaires, tels que le poisson zèbre ou le medaka, pour faire avancer nos connaissances sur les mécanismes régissant cette fonction cellulaire. / Chaperone-Mediated Autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player in the control of numerous cellular functions, and whose defects have been associated to several human pathologies, including neurodegenerative diseases, cancers and immune disorders. To date, this cellular function was presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in non-tetrapod species. However, we recently identified the existence of expressed sequences displaying high homology with the mammalian LAMP2A in several fish species, challenging that view and suggesting that CMA appeared much earlier during evolution than initially thought. In the present thesis, we first present new evidences about the evolutionary history of the gene LAMP2 in vertebrates. We demonstrate that LAMP2 appeared after the second whole genome duplication that occurred at the root of the vertebrate lineage approximately 500 million years ago. By using a fluorescent reporter previously used to track CMA in mammalian cells, we then revealed the existence of a CMA-like pathway in a fibroblast cell line of the fish medaka (Oryzias latipes). Finally, to address the physiological role of Lamp2a in fish, we generated, medaka knockout for the splice variant lamp2a, and found severe alterations in the intermediary metabolism, as previously demonstrated in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.

Page generated in 0.0258 seconds