• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Un modèle d'Ising Curie-Weiss de criticalité auto-organisée / A Curie-Weiss model of self-organized criticality

Gorny, Matthias 08 June 2015 (has links)
Dans leur célèbre article de 1987, les physiciens Per Bak, Chao Tang et Kurt Wiesenfeld ont montré que certains systèmes complexes, composés d'un nombre important d'éléments en interaction dynamique, évoluent vers un état critique, sans intervention extérieure. Ce phénomène, appelé criticalité auto-organisée, peut être observé empiriquement ou simulé par ordinateur pour de nombreux modèles. Cependant leur analyse mathématique est très ardue. Même des modèles dont la définition est apparemment simple, comme les modèles décrivant la dynamique d'un tas de sable, ne sont pas bien compris mathématiquement. Le but de cette thèse est la construction d'un modèle de criticalité auto-organisée, qui est aussi simple que possible, et qui est accessible à une étude mathématique rigoureuse. Pour cela, nous modifions le modèle d'Ising Curie-Weiss généralisé en introduisant un contrôle automatique du paramètre de température. Pour une classe de distributions symétriques satisfaisant une certaine condition d'intégrabilité, nous montrons que la somme Sn des variables aléatoires du modèle a le comportement typique du modèle d'Ising Curie-Weiss généralisé critique: les fluctuations sont d'ordre n^(3/4) et la loi limite est C exp(- lambda*x^4) dx, où C et lambda sont des constantes strictement positives. Notre étude nous a menés à généraliser ce modèle dans plusieurs directions : cas de la dimension supérieure, fonctions d'interactions plus générales, extension à des auto-interactions menant à des fluctuations d'ordre n^(5/6). Nous étudions aussi des modèles dynamiques dont la distribution invariante est la loi de notre modèle d'Ising Curie-Weiss de criticalité auto-organisée. / In their famous 1987 article, Per Bak, Chao Tang and Kurt Wiesenfeld showed that certain complex systems, composed of a large number of dynamically interacting elements, are naturally attracted by critical points, without any external intervention. This phenomenon, called self-organized criticality, can be observed empirically or simulated on a computer in various models. However the mathematical analysis of these models turns out to be extremely difficult. Even models whose definition seems simple, such as the models describing the dynamics of a sandpile, are not well understood mathematically. The goal of this thesis is to design a model exhibiting self-organized criticality, which is as simple as possible, and which is amenable to a rigorous mathematical analysis. To this end, we modify the generalized Ising Curie-Weiss model by implementing an automatic control of the inverse temperature. For a class of symmetric distributions whose density satisfies some integrability conditions, we prove that the sum Sn of the random variables behaves as in the typical critical generalized Ising Curie-Weiss model: the fluctuations are of order n^(3/4) and the limiting law is C exp(- lambda*x^4) dx where C and lambda are suitable positive constants. Our study led us to generalize this model in several directions: the multidimensional case, more general interacting functions, extension to self-interactions leading to fluctuations with order n^(5/6). We also study dynamic models whose invariant distribution is the law of our Curie-Weiss model of self-organized criticality.
2

Exponential weighted aggregation : oracle inequalities and algorithms / Agrégation à poids exponentiels : inégalités oracles et algorithmes

Luu, Duy tung 23 November 2017 (has links)
Dans plusieurs domaines des statistiques, y compris le traitement du signal et des images, l'estimation en grande dimension est une tâche importante pour recouvrer un objet d'intérêt. Toutefois, dans la grande majorité de situations, ce problème est mal-posé. Cependant, bien que la dimension ambiante de l'objet à restaurer (signal, image, vidéo) est très grande, sa ``complexité'' intrinsèque est généralement petite. La prise en compte de cette information a priori peut se faire au travers de deux approches: (i) la pénalisation (très populaire) et (ii) l'agrégation à poids exponentiels (EWA). L'approche penalisée vise à chercher un estimateur qui minimise une attache aux données pénalisée par un terme promouvant des objets de faible complexité (simples). L'EWA combine une famille des pré-estimateurs, chacun associé à un poids favorisant exponentiellement des pré-estimateurs, lesquels privilègent les mêmes objets de faible complexité.Ce manuscrit se divise en deux grandes parties: une partie théorique et une partie algorithmique. Dans la partie théorique, on propose l'EWA avec une nouvelle famille d'a priori favorisant les signaux parcimonieux à l'analyse par group dont la performance est garantie par des inégalités oracle. Ensuite, on analysera l'estimateur pénalisé et EWA, avec des a prioris généraux favorisant des objets simples, dans un cardre unifié pour établir des garanties théoriques. Deux types de garanties seront montrés: (i) inégalités oracle en prédiction, et (ii) bornes en estimation. On les déclinera ensuite pour des cas particuliers dont certains ont été étudiés dans littérature. Quant à la partie algorithmique, on y proposera une implémentation de ces estimateurs en alliant simulation Monte-Carlo (processus de diffusion de Langevin) et algorithmes d'éclatement proximaux, et montrera leurs garanties de convergence. Plusieurs expériences numériques seront décrites pour illustrer nos garanties théoriques et nos algorithmes. / In many areas of statistics, including signal and image processing, high-dimensional estimation is an important task to recover an object of interest. However, in the overwhelming majority of cases, the recovery problem is ill-posed. Fortunately, even if the ambient dimension of the object to be restored (signal, image, video) is very large, its intrinsic ``complexity'' is generally small. The introduction of this prior information can be done through two approaches: (i) penalization (very popular) and (ii) aggregation by exponential weighting (EWA). The penalized approach aims at finding an estimator that minimizes a data loss function penalized by a term promoting objects of low (simple) complexity. The EWA combines a family of pre-estimators, each associated with a weight exponentially promoting the same objects of low complexity.This manuscript consists of two parts: a theoretical part and an algorithmic part. In the theoretical part, we first propose the EWA with a new family of priors promoting analysis-group sparse signals whose performance is guaranteed by oracle inequalities. Next, we will analysis the penalized estimator and EWA, with a general prior promoting simple objects, in a unified framework for establishing some theoretical guarantees. Two types of guarantees will be established: (i) prediction oracle inequalities, and (ii) estimation bounds. We will exemplify them for particular cases some of which studied in the literature. In the algorithmic part, we will propose an implementation of these estimators by combining Monte-Carlo simulation (Langevin diffusion process) and proximal splitting algorithms, and show their guarantees of convergence. Several numerical experiments will be considered for illustrating our theoretical guarantees and our algorithms.

Page generated in 0.0767 seconds