121 |
Time-resolved Multiplexed Förster Resonance Energy Transfer for Nucleic Acid Biosensing / Transfert d'énergie par résonance de type Förster résolu en temps pour la bio-détection multiplexée des acides nucléiquesGuo, Jiajia 18 June 2019 (has links)
Les biomarqueurs à base d’acides nucléiques, qui sont impliqués dans le contrôle de l'expression génétique, sont spécifiques de nombreux types de cancers. Les applications basées sur le transfert d'énergie par résonance de Förster (FRET) sont parmi les plus prometteuses pour la biodétection d’acides nucléiques. Comme la détection simultanée de plusieurs acides nucléiques est très demandée et que le multiplexage spectral est limité par des interférences (optical crosstalk), le multiplexage temporel est utilisé ici pour ajouter de nouvelles possibilités de multiples détections simultanées. La thèse porte sur le développement de systèmes comprenant différentes distances entre molécules donneuses et acceptrices de FRET (Terbium vers fluorophores) pour créer des signaux d'intensité spécifiques correspondant à différentes séquences d'acides nucléiques. Les distances Tb-to-dye peuvent être arrangées en positionnant spécifiquement le donneur Tb sur des molécules d’ADN de différentes longueurs. Les technologies d'amplification d’acides nucléiques, telles que la réaction d'hybridation en chaîne (HCR) et l’amplification circulaire de l’ADN (RCA), ont été utilisées pour obtenir simplicité, rapidité, sélectivité et sensibilité dans la détection d’acides nucléiques. Le multiplexage temporel du signal de FRET a également été combiné avec le multiplexage spectral (couleur) pour le démultiplier. De plus, la possibilité d'un multiplexage temporel à base de nanoparticules a été démontrée. / Nucleic acid biomarkers, which involve in gene expression control, are found specific for many kinds of cancers. Förster Resonance Energy Transfer (FRET) based applications are one of the most promising for nucleic acid biosensing. As parallel detection of multiple nucleic acids is highly demanded and spectral multiplexing is limited by optical crosstalk, temporal multiplexing is used for opening another dimension of the multiplexing. The thesis focuses on developing different Tb-to-dye FRET distances to create specific intensity signals corresponding to different nucleic acid sequences. The Tb-dye distances can be tuned by specific location of the Tb donor using different lengths of DNA. Amplification technologies, such as hybridization chain reaction (HCR) and rolling circle amplification (RCA), are used to achieve simplicity, rapidity, selectivity, and sensitivity of nucleic acid detection. Temporal multiplexing FRET was also combined with spectral (color) multiplexing for higher order multiplexed detection. Moreover, a single Tb-QD FRET modeling demonstrated the possibility of nanoparticle-based temporal multiplexing.
|
122 |
Ingénierie de l’anisotropie magnétique dans les complexes mononucléaires de cobalt(II) et les métallacrowns à base de lanthanides / Engineering Magnetic Anisotropy in Mononuclear Cobalt(II) Complexes and Lanthanide-based MetallacrownsShao, Feng 04 July 2017 (has links)
Comme nous le savons, les applications sont déterminées par des propriétés, qui sont essentiellement déterminées par la structure. L’interaction entre la forme (structure moléculaire) et la fonction (propriétés physiques) peut être exploitée par le ligand, l’ion métallique, l'approche métallacrown et ainsi de suite. Les travaux portent sur la synthèse et l’étude du comportement magnétique de complexes mononucléaires cobalt(II) de géométrie bipyramide trigonale et sur l’étude de complexes mononucléaires de lanthanides possédant une structure de type métallacrown.Pour les complexes de cobalt(II), l’objectif a été de modifier l’anisotropie magnétique en modifiant la nature du ligand organique tétradenté et du ligand terminal en gardant, autant que faire se peut, la géométrie et même la symétrie des complexes. Presque tous ces complexes se comportent comme des molécules-aimants avec une barrière énergétique à l’inversion de l’aimantation qui peut être liée à leur anisotropie magnétique et donc à la nature des ligands. Et les complexes métallacrown à base de lanthanides étant hautement symétriques, permet de les utiliser comme modèles pour effectuer une corrélation entre la nature de l’ion lanthanide et leurs propriétés d’aimants.La thèse est composée de 6 chapitres. Le chapitre 1 présente l’état de l’art du magnétisme, des molécules-aimants (SMMs et SIMs), et quelques exemples importants. Le chapitre 2 se concentre sur une famille de complexes de géométriebipyramide trigonale de formule générale [Co(Me6tren)X]Y avec le ligand axial (X) et le contre-ion (Y) induisant le comportement SMM.Dans cette série de composés, j’ai étudié l’influence du ligand axial X sur la nature et l’amplitude de l’anisotropie magnétique. J’ai montré que la série des halogénures, l’anisotropie la plus forte est obtenue pour le ligand axial fluorure (F–). J’ai aussi étudié l’effet du cation Y qui influence l’interaction entre les molécules qui affectent le comportement d’aimant moléculaire. Au chapitre 3, on étudie l’influence du changement du ligand tétradenté. Le remplacement des trois atomes d’azote qui se trouvent en position équatoriale dans la sphère de coordination de cobalt(II) par des atomes de soufre induit une augmentation des distances Co–L dans le plan équatorial qui conduit à une plus forte anisotropie. Les calculs théoriques effectués sur ces complexes permettent de rationaliser les résultats expérimentaux et surtout de prévoir les propriétés de nouveaux complexes. Les chapitres 4 et 5 concernent deux séries de SMM 12-MC-4 basées sur LnGa4 (Ln = TbIII, DyIII, HoIII, ErIII, YbIII) avec les ligands basés sur l’acide salicylhydroxamique (H3shi) et l’acide 3-hydroxy-2-naphtohydroxamique (H3nha). J’ai préparé plusieurs complexes et étudié leurs propriétés magnétiques. Les calculs théoriques permettent de rationaliser la différence entre les propriétés des magnétiques dues aux différents ions lanthanide. Enfin, une conclusion générale avec des perspectives sont récapitulées au chapitre 6. / As we know, the applications are determined by properties, which are essentially determined by structure. The interplay between form (molecular structure) and function (physical properties) can be exploited engineering by the ligand, the metal ion, the metallacrown approach and so on. The work focuses on the synthesis and the study of the magnetic behavior of mononuclear cobalt(II) complexes with trigonal geometry and on the study of mononuclear lanthanide complexes that possess a metallacrown structure.For the cobalt(II) complexes, the aim was to tune the magnetic anisotropy by changing the nature of the tetradentate organic ligand and the terminal ligand. Almost all these complexes behave as Single Molecule Magnets with an energy barrier to the reversal of the magnetization that can be linked to their magnetic anisotropy and thus to the nature of the organic ligands. The lanthanide containing metallacrown complexes are highly symmetric, which allows performing a correlation between the nature of the lanthanide ion and their Single Molecule Magnet properties.The dissertation will be composed of 6 chapters. Chapter 1 introduces the background of the magnetism, Single Molecule Magnets, Single Ion Magnets, and some important SIMs. Chapter 2 focuses on a family of trigonal bipyramidal complexes [Co(Me6tren)X]Y. We show that the axial ligand affects the SMM behavior allowing us to prepare a complex with a magnetic bistability at T = 2 K. In Chapter 3, we examine the effect of changing the coordinated atoms (sulfur instead of nitrogen) in the equatorial coordination sphere of cobalt(II). We demonstrate that this slight change improves the SMM behavior. Chapter 4 and 5, which concern two series of 12-MC-4 SMMs based on LnGa4 (Ln = TbIII, DyIII, HoIII, ErIII, YbIII) with the ligands salicylhydroxamic acid (H3shi) and 3-hydroxy-2-naphthohydroxamic acid (H3nha), respectively, where we correlate the nature of the lanthanide ion to its magnetic behavior using ab initio calculations. At last, the understanding gained from this dissertation research, along with future research directions will be recapitulated in Chapter 6.
|
123 |
Synthesis, Functionalization, and Characterization of Dominant UV Emitting Upconverting Nanocrystals and Absolute Quantum Yield and Power Dependence Metrics for the Elucidation of Upconversion MechanismsStecher, Joshua T. January 2015 (has links)
<p>The discovery, formulation, and characterization of novel compositions of matter for aid in the diagnosis and treatment of disease has ever been a compelling force behind nanomaterials development. In instances of disease originating from oncogenic mutation, proliferation, and metathesis; cancer has long been a most difficult dysfunction to diagnosis and treat in virtue of its innate alteration and disregulation of otherwise well-managed and healthful cellular processes. To date, cancer therapies have relied largely on highly toxic chemotherapy or radiation treatments, addressing the overarching problem of individual cellular mutations in a global sense, often deleterious to the overall health of the patient. Ever-progressing work on nanomaterial-based applications to either promote cancer diagnosis or implement novel therapeutic means of drug delivery, activation, or the precisely-targeted destruction of cancer cell lines has been afforded much attention in the integrated biological and materials science fields. Recent developments in nanosized laser materials incorporating lanthanide-doped sensitizer and activator pairs and the development of numerous crystallographic, co-dopant, morphological, and/or surface-appended optimizations to these materials have given rise to a novel class of nanomaterials, with unique photophysical properties that have direct import into light-based activation of chemical processes, triggered non-invasively through biological tissues, and merging intra-cellularly targetable nanocrystalline compositions and ex vivo light activation. Upconverting nanocrystals (UCNCs) are one such class of nanomaterial wherein near-infrared (NIR) light, at the nadir of tissue absorption, can serve to sequentially or cooperatively excite long-lived lanthanide (Ln3+) 4f excited states and, through various energy transfer processes coupled between both the UCNC material composition and its integral Ln3+ dopants, are capable of building an excited state population capable of emitting in higher frequencies than its incident NIR excitation.</p><p>In the study of these UCNCs, the prospect of activating intra-cellular photodynamic processes or drugs of low cellular toxicity, until light activated in a precisely localized regime (e.g. the nucleus of a cell), has motivated extensive research into the generation of novel UCNC materials, in multiple compositions and on multiple size scales to direct the mechanisms of upconversion (UC) to produce high fluence ultraviolet (UV) photons upon NIR (972 nm) excitation. Continuing optimizations have yielded a high ytterbium (Yb) sensitizer, cubic α-NaYbF4 UCNC composition, codoped with a thulium activator, to generate excited state saturated UV transitions, 1I6 → 3F4 (349 nm) and 1D2 → 3H6 (362 nm), and their refinement to afford dominant UV emissive spectral signatures at low NIR laser excitation. Their photophysical dynamics are sparsely described in the literature, breaking from both fields of laser photonics and conventional inorganic nanoscience, and require renewed emphasis to be afforded in exacting crystallographic, photophysical, and size dependent effect characterization, heavily directing the structure-function relationships of luminescent Ln3+ dopants and their host crystal matrices. Requisite in this study is a call for the optimization of uniform, monodisperse, and reproducible preparations of unique UCNCs and precise characterization of the properties they display and the origins thereof.</p><p>Offered herein are the enveloping efforts to more fully understand the mechanistic processes of UC of both poorly characterized, literature standard materials, novel UCNCs tuned for enhancement of UC emission in the UV, and the adaptations to each that ultimately affect their photophysical dynamics. A tandem course of this research follows from inorganic shelling, passivation methodologies to ameliorate crystallographic surface defects and UC luminescence quenching sites to overall enhance the dominant UV emissivity of novel co-doped UCNC. These state-of-the-art UC materials are: 1) α-NaYbF4: Tm3+, interlaced with gallium, chromium, yttrium, and other trivalent metal ions, serving to finely modulate UC mechanistic processes and enhance luminescent properties and 2) sodium co-doped LaF3 and BaLaF4 (0.5%Tm, 20%Yb), displaying 3 and 2 orders of magnitude enhancement of UV emissions due to controlled perturbation of the local crystal field environment. The Core @ Shell architectural derivatives of these materials exhibit an eminent departure from classical luminescent fluorophores, phosphors, or quantum confined luminescent nanomaterials, in both degree of luminescent flux generation and the complicated mechanistic processes they are derived from.</p><p>To a great extent, this work attempts to establish testable grounds for comparison of UCNCs; extending from interrogation of photophysical lifetime measurements, excitation versus emissive flux power dependence studies, high resolution X-ray photoelectron spectroscopy (HR-XPS) and power diffraction (HR-XRD) assessments of crystallographic defects and perturbations on the atomic scale, and the establishment of new metrics of radiant flux versus absolute quantum yield for use in comparison of UCNCs towards their applicability in areas of variable or limited excitation flux and the ultimate utility of discerning hit-to-lead UCNC materials for medical nanodevice compositions. A salient component affecting these metrics is the direct surface interactions with respect to solvents, coordinating ligands, and appended functional moieties for enhancement of UCNCs towards specific applications; largely directed towards cancer biology and medical study. In a confluence of inquisition of UCNCs and their high energy, UV luminescent properties, interfacing with the surface presenting effects of solublization and bio-targeting molecular functionalization; literature standard, β-NaYF4 (2%Er, 20%Yb) UCNCs have been generated in highly uniform compositions to assess the size-dependent effects with respect to luminescent quenching surrounding a UCNC surface and functionalization methodologies have been offered as a proof of concept towards the construction of an optimized biomolecular targeting nanodevice, with known limits and predictable interactions, both to NIR excitation light and potential intra-cellular biological environments.</p><p>The ultimate goal of these explorations is the innovative fusion of the above concepts into a nanotherapeutic device involving: 1) the generation of a well-studied and predictable NIR-absorbing and dominant UV-emissive UCNC, with defined co-dopant optimizations and employing an optimal Core @ Shell architecture, 2) the requisite surface functionalization needed to afford aqueous solubility and a means of covalently conjugating targeting molecules of interest, and 3) the ultimate and equal assessment of such a composite system with respect to possible alternate materials in the literature and novel UCNCs currently under development. To date, no such convergent study has been conducted to any degree of reproducibility or certainty of desired and defined functionality. In this work is described in detail each optimized component for such a device or potentially one marked by differing, but assessable conditions for alternate applications. The optimization of a sub-10 nm, dominant UV-emissive UCNC, the crystallographic and photophysical origins of its UC mechanism under varied conditions, and the optimal means of their employment (both in terms of establishing equivalent metrics and utility in cancer nanotherapeutics), assessment, and readdressing of, as yet undiscovered limits to these materials are presented.</p> / Dissertation
|
124 |
Development of Novel Hydroporphyrins for Light Harvesting and Sensitising NIR Lanthanide LuminescenceXiong, Ruisheng January 2017 (has links)
Chlorins, as the core structures of chlorophylls, have been extensively studied for harvesting solar energy, fluorescent imaging and photodynamic therapy against cancer. This thesis is concerned with design and synthesis of novel chlorins as antennae for harvesting light and sensitising near infrared lanthanide luminescence. In the first part, a series of chlorin monomers, dimers and polymers were synthesised and their photophysical properties were characterised. The chlorin monomers were substituted with five-membered heterocycles, such as thiophenes and furans. These heterocycles function as auxochromes analogous to the natural ones in chlorophylls, and extend chlorin absorption and emission strongly to the red (up to λem = 680 nm). A borylation method was developed to prepare borylated chlorins, which gave access to directly linked chlorin dimers through Suzuki coupling reaction. Different regioisomers of chlorin dimer were prepared, including β-meso homodimers, meso-meso homodimers and heterodimers. The dimerisation resulted in red-shifted absorption and emission. Chlorin polymerisations were performed both electrochemically and chemically. Bis-thienylchlorins yielded chlorin films and an organic solvent soluble copolymer with hexylthiophene, respectively. These polymers from both polymerisations have red absorptions beyond 700 nm, and might be used as light-harvesting antennae. In the second part, chlorins were used as chromophores to sensitise near infrared lanthanide luminescence. Two types of chlorin-lanthanide dyads were prepared through lanthanide coordination with cyclen derivatives and dipicolinic acids (DPA). The cyclen-based dyads were poorly soluble in water, thus their near infrared emissions were not observed. The other type of complexes was fully soluble in H2O and THF. Both Nd and Yb emission were recorded even upon excitation into the Q bands of chlorins. In the dyads with free base chlorins, the singlet state of chlorins might be involved in the sensitisation of lanthanide luminescence. These DPA-based dyads presented two-color emission based on one chlorin and two-color excitation based on one lanthanide ion. These dyads would enable in theory 4-color imaging. In the last part, a microwave-assisted two-step synthesis was described to prepare dipyrromethanes, which are the key intermediates in the chlorin synthesis. This mild method took advantage of the nucleophilicity of pyrrole and the electrophilicity of N,N-dimethylaminomethyl pyrroles. The usually used acid catalysis is detrimental to many functionalities, thus our methods enable the synthesis of dipyrromethanes with acid sensitive groups or a formyl group.
|
125 |
Spectroscopie électronique de complexes du nickel(II), de lor(I), du ruthénium(II) et de certains lanthanides : caractéristiques inhabituelles de leur structure électroniqueBaril-Robert, François January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
126 |
Využití částic oxidu titaničitého s fosfonáty v medicíně / Titaniun Dioxide - Phosphonate Assemblies as Medical NanoprobesŘehoř, Ivan January 2011 (has links)
Titanium Dioxide - Phosphonate Assemblies as Medical Nanoprobes Ivan Řehoř PhD. Thesis Abstract: Multimodal imaging-therapeutic nanoprobe TiO2@RhdGd was prepared and successfully used for in- vitro and in-vivo cell tracking as well as for killing of cancer cells in-vitro. TiO2 nanoparticles, 12 nm in diameter, were used as a core for phosphonic acid modified functionalities, responsible for contrast in MRI and optical imaging. The phosphonic acid derivatives, used for surface modification, allows for grafting extraordinarily high loads of irreversibly adsorbed molecules of both types in one step. The prepared probe shows very high 1 H r1 relaxivity value as well as relaxivity density value, both crucial parameters for its use in MRI. The presence of fluorescent dye in its structure allows for its visualization by means of fluorescence microscopy. The applicability of the probe was studied, using three living systems - mesenchymal stem cells, cancer HeLa cells and T-lymphocytes. The probe did not exhibit toxicity in any of these systems and its long time storage in a lysosomal compartment was confirmed. Labeled cells were successfully visualized in-vitro by means of fluorescence microscopy and MRI. Consequent visualization of labeled cells in-vivo by means of fluorescence microscopy was also achieved....
|
127 |
Compostos de adição entre trifluorometanossulfonatos (FS) de lantanídeos (III) e ítrio(III) e óxido de tioxano (TSO) / Addition compounds between trifluoromethanesulfonates (FS) of lanthanides (III) and yttrium (III) oxide and thioxane (TSO)Silva, Ademir Oliveira da 20 December 1984 (has links)
Neste trabalho são descritas a preparação e caracterização dos compostos de adição, resultantes das reações de diferentes sais hidratados do tipo Ln (FS)3 (onde Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu e Y; e FS = trifluorometanossulfonato) com o óxido de tioxano (TSO). A estequiometria dos compostos formados foi investigada através de análise elementar para os diferentes íons, carbono e hidrogênio. Os resultados obtidos determinaram a presença de 7,5 moles do ligante para um mol do sal de partida. Portanto, a fórmula geral para todos produtos é Ln(FS)3.7,5TSO. A estrutura dos compostos foi investigada por espectroscopia de absorção nas regiões do infravermelho e do visível e de emissão no visível. Através do espectro de infravermelho verificamos que o ligante está coordenado ao metal central através do grupo sulfóxido. Outras informações relevantes são concernentes ao ânion; em todos os espectros é verificado um desdobramento nas frequências de estiramento vSO3, bem como pequenos deslocamentos para maiores frequências dos estiramentos C-O-C. O espectro de absorção na região do visível foi obtido apenas para o composto Nd(FS)3.7,5TSO no estado sólido e nas temperaturas ambiente e do nitrogênio líquido. A característica principal desses espectros é a presença das transições hipersensitivas. Nossa análise resulta na atribuição de uma simetria não cúbica para o composto. Além disso, esses espectros permitem o cálculo de outros parâmetros relevantes, tais como β, δ e b1/2. Num experimento paralelo, o espectro de Nd(FS)3.7,5TSO foi obtido em solução de nitrometano. Os resultados nos permitiram calcular a força do oscilador. O espectro de emissão foi obtido exclusivamente para o derivado de európio. O espectro foi registrado nas temperaturas ambiente e do nitrogênio líquido do composto no estado sólido. As transições mais relevantes e presentes nesse espectro foram 5D0→ 7F1 e 5D0→ 7F2. Com base nas tabelas de Forsberg e na estequiometria do composto, sugerimos que o grupo pontual mais provável é D3d. É possível também racionalizar os resultados como indicativos de uma geometria do composto como um octaedro biencapuzado. Estas condições foram estendidas para todos os compostos, uma vez que toda a série é isomorfa, como foi indicado pelos diagramas de raios-X (método do pó). Além disso, outras propriedades, tais como pontos de fusão e condutância eletrolítica foram medidas e são discutidas. / This work describes the preparation and characterization of addition compounds prepared by reacting hydrated salts of Ln(FS)3 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y; and FS = trifluoromethanesulfonate) with thioxane oxide (TSO). Metal, in carbon and hydrogen analysis on the adducts obtained revealed that the molecular formula for the all series is Ln(FS)3.7,5TSO. The structure of these compounds were investigated by emission and absorption spectroscopy in the infrared and the visible regions. The infrared spectra show that the TSO ligand is bonded to the central ion through the sulphoxide group. Other relevant informations on the spectra are concerned to the anion. It was verified a splitting in all the vSO3 stretching frequencies and a small higher frequency shift of the vC-O-C stretching. The visible spectrum of Nd(FS)3.7.5TSO was recorded in the solid state at room and at liquid nitrogen temperatures. The main feature contained in this spectrum is the hypersensitive transitions. It is possible to conclude from the spectrum that the compound exhibits a non-cubic symmetry. Furthermore, the spectrum supplies the data for the calculation of the β, δ and b1/2 parameters. In a second experiment, the Nd(FS)3.7,5TSO spectrum was recorded in nitromethane solution; from this, we have calculated the P oscillator strength. The emission spectrum of the Eu(FS)3.7.5TSO compound was recorded in the solid state at room and at liquid nitrogen temperatures. The relevant transitions observed were 5D0→ 7F1 and 5D0→ 7F2. With basis on the Forsberg tables and the compound stoichiometry, it is possible to obtain the data supporting the suggestion that the compound point group is D3d. Futhermore, we suggest a bicapped octahedral geometry for this compound. Considering that all the compounds synthesized are isomorphous, as revealed by the powder X-ray diagrams, we can attribute this same geometry to the all series of adducts. Other relevant properties of the Ln(FS)3.7.5TSO compounds such as melting points and conductance were measured and they are discussed.
|
128 |
Synthesis and photophysical measurements of a series of lanthanide-benzenedicarboxylate coordination polymersUnknown Date (has links)
Within solid-state chemistry, coordination polymers have gained interest for use in various applications such as sensing, catalysis, display technology, hydrogen storage, etc. The use of lanthanide ions in these materials provides a mean of exploring how structure may affect luminescence efficiency. In this study, the photophysics of several lanthanide benzenecarboxylates was studied. This data combined with data from other coordination polymers created in our lab indicate that the established guidelines for producing highly efficient materials may not correlate directly from solution to the solid state and that structure may also play a role. / by Jessica Montressa Clark. / Thesis (M.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
129 |
Nouveaux développements en biologie structurale basés sur des complexes de lanthanide / New developments in structural biology based on lanthanide complexesEngilberge, Sylvain 19 December 2017 (has links)
Depuis les premières structures de protéines déterminées dans les années 1950, la cristallographie aux rayons X s’est imposée comme une méthode de choix pour l’obtention de données structurales à l’échelle atomique. Malgré les progrès technologiques qui ont révolutionné cette méthode (sources synchrotron, détecteurs pixel, programmes informatiques performants), l’obtention d’une carte de densité électronique permettant de modéliser la structure d’une macromolécule demeure toujours limitée par deux goulots d’étranglement qui sont, l’obtention de cristaux de la macromolécule d’intérêt et la résolution du problème des phases inhérent à l’enregistrement des données de diffraction.Cette thèse présente un nouveau complexe de lanthanide appelé « crystallophore » (Tb-Xo4). Cette molécule a été développé en collaboration avec Olivier Maury et François Riobé du laboratoire de chimie Matériaux Fonctionnels et Photonique (ENS –Lyon). La conception de ce nouveau complexe est basée sur quinze années de développement dans le domaine de la biologie structurale. Cette thèse présente les effets uniques induits par de Tb-Xo4 sur la cristallisation et sur la détermination des structures de macromolécules biologiques. L’ajout de Tb-Xo4 au cours de la cristallisation permet d’induire un nombre important de conditions de cristallisation exploitables dont certaines sont propres à la présence du crystallophore. L’analyse des structures atomiques de différentes protéines co-cristallisées en présence de Tb-Xo4 a permis à la fois de mettre en avant le pouvoir phasant élevé de Tb-Xo4 mais également de décrire finement l’interaction supramoléculaire du complexe avec la surface des macromolécules. Ce travail a conduit à la mise en place de protocoles de cristallisation et de phasage des macromolécules biologique assistés par Tb-Xo4. Sur la base de la compréhension du mode d’interaction de ce nouveau composé, cette thèse aboutit à la proposition d’un modèle expliquant les propriétés uniques de ce nouveau complexe de lanthanide. / Since the first protein structure determined in the 1950s, X-ray crystallography emerged as a method of choice to obtain structural data at atomic resolution. Despite technological advances such as new synchrotron sources, hybrid pixel detectors, and high-performance softwares, obtaining an electron density map of a biological macromolecule is always limited by two major bottlenecks namely, producing high quality single crystals and solving the phase problem.This thesis presents a new lanthanide complex called “Crystallophore” (Tb-Xo4). This compound has been developed in collaboration with Olivier Maury and François Riobé of the Laboratoire de chimie Matériaux Fonctionnels et Photonique (ENS –Lyon). The design of this new complex is based on fifteen years of development in the field of structural biology. This thesis highlights the effects of Tb-Xo4 on the crystallisation and the structure determination of biological macromolecules. Indeed, the addition of Tb-Xo4 to a protein solution induces a large number of new and unique crystallization conditions. The analysis of the structures of several proteins co-crystallized with Tb-Xo4 allowed both, to highlight the high phasing power of Tb-Xo4 but also to describe finely the supramolecular interaction of the complex with the macromolecules. This work led to protocols dedicated to crystallization and phasing assisted with Tb-Xo4. Finally, this thesis leads to a model explaining the unique properties of this new lanthanide complex.
|
130 |
Nanoparticles as MRI contrast agents and biomarkers – applications in prostate cancer and mild traumatic brain injuryDash, Armita 29 January 2018 (has links)
Magnetic Resonance Imaging (MRI) is the most prominent non-invasive technique used in clinical diagnosis and biomedical research. Its development as an imaging technique has been aided by contrast agents (CAs) which enhance contrast to noise ratio in the images. This dissertation deals with paramagnetic lanthanide- and superparamagnetic iron-based nanoparticles (NPs) which are potential CAs at clinical field of 3 T and a high field of 9.4 T. Chapter 1 provides a brief overview of colloidal nanoparticles, with an emphasis on their surface chemistry and magnetic properties for bio-applications. Chapter 2 employs europium as an optical probe to illustrate the contribution of inner, second and outer sphere relaxation towards longitudinal and transverse relaxivities of paramagnetic NP-based CAs. Chapter 3 investigates the positive and the negative contrast enhancement abilities and magnetization of paramagnetic NPs comprising a core of sodium dysprosium fluoride with a sodium gadolinium fluoride shell. Their surface chemistry is tuned to target prostate cancer specifically. The application of these NPs is further extended in Chapter 4 to track an intraneuronal protein called tau following mild traumatic brain injury. Chapter 5 deals with facile synthesis and long-term stability of superparamagnetic iron NPs for their potential application as CAs. Chapter 6 illustrates the concept of MRI correlation using ‘T1-only’ and ‘T2-only’ NPs. Chapter 7 investigates on the dynamics involved in the phospholipids coating the surface of NPs. Chapter 8 concludes on the work detailed in the previous chapters and outlines the future outlook. / Graduate / 2020-01-15
|
Page generated in 0.057 seconds