1 |
Modeling the Evolution of Insect Phenology with Particular Reference to Mountain Pine BeetleYurk, Brian P. 01 May 2009 (has links)
Climate change is likely to disrupt the timing of developmental events (phenology) in insect populations in which development time is largely determined by temperature. Shifting phenology puts insects at risk of being exposed to seasonal weather extremes during sensitive life stages and losing synchrony with biotic resources. Additionally, warming may result in loss of developmental synchronization within a population, making it difficult to find mates or mount mass attacks against well-defended resources at low population densities. It is unknown whether genetic evolution of development time can occur rapidly enough to moderate these effects. The work presented here is largely motivated by the need to understand how mountain pine beetle (MPB) populations will respond to climate change. MPB is an important forest pest from both an economic and ecological perspective, because MPB outbreaks often result in massive timber loss. Recent MPB range expansion and increased outbreak frequency have been linked to warming temperatures. We present a novel approach to modeling the evolution of phenology by allowing the parameters of a phenology model to evolve in response to selection on emergence time and density. We also develop a temperature-dependent phenology model for MPB that accounts for multiple types of developmental variation: variation that persists throughout a life stage, random variation, and variation due to the MPB oviposition mechanism. This model is parameterized using MPB development time data from constant temperature laboratory experiments. We use Laplace's method to approximate steady distributions of the evolution model under stable temperatures. Here the mean phenotype allows for parents and offspring to be oviposited at exactly the same time of year in consecutive generations. These results are verified numerically for both MPB and a two-stage model insect. The evolution model is also applied to investigate the evolution of phenology for MPB and the two-stage model insect under warming temperatures. The model predicts that local populations can only adapt to climate change if development time can adapt so that individuals can complete exactly one generation per year and if the rate of temperature change is moderate.
|
2 |
[en] PROBLEMS IN THERMAL CONDUCTIVITY FOR HARMONIC AND ANHARMONIC CHAINS / [pt] PROBLEMAS EM CONDUTIVIDADE TÉRMICA EM CADEIAS HARMÔNICAS E ANARMÔNICASMICHAEL MORAES CANDIDO 16 August 2017 (has links)
[pt] No presente trabalho faz-se uma análise sobre quantidades estatísticas de cadeias lineares e não lineares na situação em que o fluxo de calor que atravessa estes sistemas encontra-se no regime estacionário. A discussão inicial é feita sobre um modelo geral de cadeia linear, com acoplamentos arbitrários entre suas partículas e alimentada por reservatórios gaussianos. Uma análise detalhada sobre quantidades como
fluxo de calor e distribuição de temperaturas do sistema é feita, onde todas as expressões analíticas correspondentes a estas quantidades são demonstradas e comparadas com resultados numéricos. Estudam-se então as mudanças quantitativas e qualitativas apresentadas pelas grandezas supracitadas quando modificam-se os acoplamentos de ancoragem entre o sistema e os reservatórios. Verifica-se
que as mudanças nos perfis de temperaturas estão relacionadas aos extremos dos cumulantes do
fluxo de calor, o que motiva uma investigação sobre a possível ocorrência de uma transição de fase no sistema. Buscando encontrar possíveis comportamentos críticos, definem-se as funções de correlação entre as velocidades quadráticas e de velocidades entre pares de partículas. A partir destas definições é possível verificar o comprimento de correlação associado à estas grandezas. Este estudo leva a um dos pontos mais interessantes do trabalho, onde conectam-se as mudanças apresentadas por grandezas do sistema como quantidades estatísticas do fluxo de calor, distribuição de temperaturas do sistema e os seus modos vibracionais frente às mudanças nos acoplamentos de ancoragem com os reservatórios. Ao estudar o fenômeno de condução de calor de uma forma mais realística e rigorosa, é imprescindível acrescentar interações não-lineares na cadeia. Considerando que a solução exata para este tipo de sistema não pode ser obtida, utiliza-se teoria de perturbação e outras ferramentas matemáticas para discutir as principais
caracterísiticas do fluxo de calor em uma cadeia anarmônica. A técnica desenvolvida nesta tese permite calcular o fluxo de calor em cadeias de tamanho arbitrário, e é válida para sistemas sob ação de reservatórios de qualquer natureza. Aplica-se o método para cadeias alimentadas por reservatórios gaussianos e poissonianos, de onde verifica-se o impacto das não linearidades sobre estes sistemas e comparam-se os resultados obtidos com o caso linear. Para a análise em que o reservatório poissoniano injeta energia no sistema, ilustra-se o efeito de cumulantes de ordem superior do ruído descontínuo sobre o fluxo de calor e como estes novos elementos podem levar a resultados que a primeira vista parecem fisicamente incoerentes. / [en] In the present work I make an analysis about statistical quantities for linear and nonlinear chains in the stationary state. We start the discussion from a general linear model, with arbitrary couplings and connected to Gaussian reservoirs. A detailed analysis for quantities like heat ow and site temperatures is obtained, where all analytical expressions respective to those quantities are derived and a compared with numerical results. Then I study the quantitative and qualitative changes presented by the aforementioned
quantities when the pinnings related to the reservoirs are modified. The changes in temperature profiles are related with the extrema of heat flux cumulants, motivating the investigation of whether phase transitions in the chain might occur. In order to investigate possible critical behaviors, I define
velocity correlation functions between pair particles and squared velocities correlation functions. From where, one is able to estabilish a correlation length respective to these quantities. This study leads to one of the most remarkable achievements of this work, which is the connection made between the changes
presented by some important statistical quantities of heat flux, the system s temperature, vibrational modes and the reservoirs pinnings. By treating the phenomenon of heat conduction in a more realistic and rigorous way, I develop a study to describe the transport properties in an anharmonic chain. Pondering
that an exact solution for this sort of system is unfeasible, I use perturbation theory and other mathematical tools to discuss the main features of heat flux in a nonlinear chain. The technique developed throughout this thesis allows one to compute the heat current for a chain of arbitrary size, and is valid for
systems under in fluence of reservoirs of any nature. We apply the method for chains governed by Gaussian and Poissonian reservoirs, verifying the impact of the nonlinearities over those systems, and comparing the obtained results to the linear case. In the case where there is a Poissonian bath injecting energy into the system, I shed some light on the effects of higher order cumulants related
to the discontinous noise in the heat flux and I show how these new elements
can lead to some results that at first glance seem physically incoherents.
|
Page generated in 0.0641 seconds