• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE INFLUENCE OF A THERMALLY BLOOMED ATMOSPHERE ON TARGET IMAGE QUALITY

Nahrstedt, David Alan January 1981 (has links)
An assessment is made of the impact of a thermally bloomed atmosphere on target image quality. The steady-state phase perturbations due to blooming and the effects of the distortion on return wave-fronts are determined using a physical optics propagation code. The wavelength of the return radiation used to sense the distortions is shown to be an important consideration in the stability of the return image. The return targets images for several realistic scenarios are reconstructed based on the incoherent point spread function for each isoplanatic region of the object (target) plane. Special requirements of the back propagation algorithm are discussed with respect to "point source" geometry, tilt, tilt sensitivity, and isoplanatism criterion. The wave optics approach is shown to agree with the experimental results in regards to image blur and distortion. The stability of the reconstructed images is discussed using merit functions defining the amount of blur, distortion, and degradation in peak irradiance. The merit functions are shown to correlate well with the scenario distortion number used to define the degree of blooming induced in the forward propagation.
2

Simulation of Cerenkov radiation for second harmonic generation and experimental generation and experimental characterization of MNA/PMMA/quartz thin film waveguides.

January 1995 (has links)
by Lui Bong Chun, Richard. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references. / Abstract / Acknowledgment / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background for the Project --- p.1 / Chapter 1.1.1 --- Interests in Blue-Green Laser --- p.1 / Chapter 1.1.2 --- Progress of Blue-Green Laser --- p.2 / Chapter 1.2 --- The Aim of the Project --- p.3 / Chapter 1.3 --- Overview the Remaining Parts of this Thesis --- p.4 / Chapter 1.4 --- References --- p.6 / Chapter Chapter 2 --- Sum Frequency Generation --- p.8 / Chapter 2.1 --- Introduction --- p.8 / Chapter 2.2 --- Sum Frequency Generation --- p.8 / Chapter 2.2.1 --- Theoretical Background for Sum Frequency Generation --- p.9 / Chapter 2.2.2 --- The Coupled Wave Equations for SFG --- p.13 / Chapter 2.2.3 --- Phase Matching Considerations --- p.16 / Chapter 2.3 --- References --- p.18 / Chapter Chapter 3 --- Cerenkov Radiation --- p.19 / Chapter 3.1 --- Introduction --- p.19 / Chapter 3.2 --- The Properties of Cerenkov Radiation by Using TM Mode --- p.21 / Chapter 3.2.1 --- Refractive Index Notation --- p.23 / Chapter 3.2.2 --- Fundamental Wave TM Guides Mode --- p.23 / Chapter 3.2.3 --- Second Harmonic TM Radiation Mode --- p.24 / Chapter 3.2.4 --- Efficiency of SHG --- p.25 / Chapter 3.3 --- Simplified Model Analysis of Cerenkov Radiation in TE Mode --- p.29 / Chapter 3.4 --- Simulation --- p.33 / Chapter 3.4.1 --- Modeling the LiNb03 --- p.33 / Chapter 3.4.2 --- Modeling an Asymmetric Slab Waveguide ´ؤPMMA doped with MNA on Fused Quartz --- p.37 / Chapter 3.4.3 --- Modeling a Symmetric Slab Waveguide ´ؤPMMA doped with MNA on Fused Quartz --- p.42 / Chapter 3.5 --- References --- p.47 / Chapter Chapter 4 --- Ellipsometry --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- General Principles --- p.49 / Chapter 4.3 --- Basic Operation --- p.50 / Chapter 4.4 --- The Optical Constants of the Bulk Materials --- p.51 / Chapter 4.5 --- Calculation the Refractive Index of the Substrates --- p.53 / Chapter 4.6 --- Ellipsometric Theory for the Thin Film --- p.57 / Chapter 4.7 --- Measurement the Refractive Index and the Thickness of the Thin Film --- p.59 / Chapter 4.7.1 --- Data --- p.62 / Chapter 4.7.2 --- Discussions --- p.73 / Chapter 4.8 --- Calculation the Refractive Index of the thin Film by Considering as a Bulk Material --- p.78 / Chapter 4.9 --- References --- p.80 / Chapter Chapter 5 --- Prism Coupling --- p.81 / Chapter 5.1 --- Introduction --- p.81 / Chapter 5.2 --- Coupling of a Plane Wave --- p.82 / Chapter 5.3 --- Numerical Approach for the Calculation of the Coupling Efficiency --- p.85 / Chapter 5.4 --- Experiment --- p.88 / Chapter 5.4.1 --- Experimental Setup --- p.88 / Chapter 5.4.2 --- Experimental Result and Discussions --- p.90 / Chapter 5.5 --- References --- p.92 / Chapter Chapter 6 --- Conclusion --- p.93 / Chapter Chapter 7 --- Future Plans --- p.96 / Chapter 7.1 --- Simplified Model of Corona Poling --- p.96 / Chapter 7.2 --- Advanced Models of Poling --- p.98 / Chapter 7.2.1 --- Slab Waveguide --- p.98 / Chapter 7.2.2 --- Channel Waveguide --- p.99 / Chapter 7.3 --- References --- p.100 / Chapter Appendix 1 --- Materials' Descriptions --- p.A-l / Chapter A.1.1 --- 2-Methyl-4-Nitoaniline --- p.A-1 / Chapter A.1.2 --- Poly ( Methyl Methacrylate ) --- p.A-3 / Chapter A.1.3 --- References --- p.A-4 / Chapter Appendix 2 --- Fabrication Procedures --- p.A-5 / Chapter A.2.1 --- Cleaning the Apparatus --- p.A-5 / Chapter A.2.2 --- Cleaning the Substrate --- p.A-5 / Chapter A.2.3 --- Thin film Fabrication --- p.A-5 / Chapter A.2.4 --- Thin Film Removal --- p.A-6 / Chapter A.2.5 --- References --- p.A-6 / Chapter Appendix 3 --- Alpha Step --- p.A-7 / Chapter A.3.1 --- Introduction --- p.A-7 / Chapter A.3.2 --- Experimental Setup --- p.A-8 / Chapter A.3.3 --- Experimental Results --- p.A-9 / Chapter A.3.3.1 --- Thin Film of PMMA without Dopant --- p.A-9 / Chapter A.3.3.2 --- Thin Film of PMMA doped with MNA --- p.A-19 / Chapter A.3.4 --- Discussions --- p.A-27 / Chapter A.3.5 --- References --- p.A-28 / Chapter Appendix 4 --- Scanning Electron Microscope --- p.A-29 / Chapter A.4.1 --- Scanning Electron Microscope --- p.A-29 / Chapter A.4.2 --- Reference --- p.A-30 / Chapter Appendix 5 --- Gaussian Beam & Coordinate System Transformation --- p.A-31 / Chapter A.5.1 --- Gaussian Beam in a Homogeneous Medium --- p.A-31 / Chapter A.5.2 --- Transformation of the Coordinate Systems --- p.A-32 / Chapter A.5.3 --- Reference --- p.A-32 / Chapter Appendix 6 --- Waist Size Measurement of Gaussian Beam --- p.A-33 / Chapter A.6.1 --- Waist Size Measurement of Gaussian Beam --- p.A-33 / Chapter A.6.2 --- References --- p.A-34 / Chapter Appendix 7 --- Quasi Phase Matching --- p.A-35 / Chapter A. 7.1 --- Introduction --- p.A-35 / Chapter A.7.2 --- Basic Concept of QPM --- p.A-36 / Chapter A.7.3 --- References --- p.A-38 / Chapter Appendix 8 --- Program Listing --- p.A-41 / Chapter A.8.1 --- Program Listing ( Chapter 3 ) --- p.A-41 / Chapter A.8.1.1 --- Program 3.1 (transcendental.m ) --- p.A-41 / Chapter A.8.1.2 --- Program 3.2 (linbo3.m) --- p.A-42 / Chapter A.8.2 --- Program Listing ( Chapter 4 ) --- p.A-45 / Chapter A.8.2.1 --- Program 4.1 ( ellipsometry.m ) --- p.A-45 / Chapter A.8.3 --- Program Listing ( Chapter 5 ) --- p.A-47 / Chapter A.8.3.1 --- Program 5.1 ( parameter.m ) --- p.A-47 / Chapter A.8.3.2 --- Program 5.2 ( coupling.m ) --- p.A-49 / Chapter A.8.3.3 --- Program 5.3 ( v_3_amp.m ) --- p.A-50 / Chapter A.8.3.4 --- Program 5.4 ( input_profile.m ) --- p.A-51
3

Design of a programmable optical scanner

Frechtling, Andrew Charles January 1976 (has links)
Thesis. 1976. B.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Bibliography: leaf 22. / by Andrew C. Frechtling. / B.S.
4

A methodology for characterizing pavement rutting condition using emerging 3D line laser imaging technology

Li, Feng 12 November 2012 (has links)
Pavement rutting is one of the major asphalt pavement surface distresses affecting pavement structure integrity and driving safety and is also a required performance measure specified in the Highway Performance Monitoring System (HPMS). Manual rutting measurement is still conducted by many state Departments of Transportation (DOTs), like Georgia DOT; however, it is time-consuming, labor-intensive, and dangerous. Although point-based rut bar systems have been developed and utilized by state DOTs to measure rutting conditions, they often underestimate rut depth measurements. There is an urgent need to develop an automated method to accurately and reliably measure rutting conditions. With the advance of sensing technology, emerging 3D line laser imaging technology is capable of collecting high-resolution 3D range data at highway speed (e.g., 100 km/h) and, therefore, holds a great potential for accurately and repeatedly measuring pavement rutting condition. The main contribution of this research includes a methodology, along with a series of methods and procedures, for the first time, developed utilizing emerging 3D line laser imaging technology to improve existing 1D rut depth measurement accuracy and repeatability and to measure additional 2D and 3D rutting characteristics. These methods and procedures include: (1) a threshold-based outlier removal method employing the multivariate adaptive regression splines (MARS) technique to remove outliers caused by non-rutting features, such as wide transverse cracks and potholes; (2) a modified topological-ordering-based segment clustering (MTOSC) method to optimally partition the continuous roadway network into segments with uniform rutting condition; (3) an overlapping-reducing heuristic method to solve large-scale segmentation problems; (4) a network-level rutting condition assessment procedure for analyzing 3D range data to statistically interpret the pavement rutting condition in support of network-level pavement management decisions; (5) an isolated rut detection method to determine the termini, maximum depth, and volume of isolated ruts in support of project-level maintenance operations. Comprehensive experimental tests were conducted in the laboratory and the field to validate the accuracy and repeatability of 1D rut depth obtained using the 3D range data. Experimental tests were also conducted in the laboratory to validate the accuracy of 3D rut volume. Case studies were conducted on one interstate highway (I-95), two state routes (SR 275 and SR 67), and one local road (Benton Blvd.) to demonstrate the capability of the developed methods and procedures. The results of experimental tests and case studies show that the proposed methodology is promising for improving the rutting measurement accuracy and reliability. This research is one of the initial effort in studying the applicability of this emerging sensing technology in pavement management. And the outcomes of this research will play a key role in advancing state DOTs’ existing pavement rutting condition assessment practices.
5

Evaluation of thermal variations on concrete pavement using three dimensional line laser imaging technology

Lewis, Zachary Ludon 13 January 2014 (has links)
Jointed Plain Concrete Pavements (JPCP) are some the most popular forms of concrete pavement that are used in the state of Georgia. Each year the Georgia Department of Transportation (GDOT) inspects and surveys their highways to determine what condition the pavement is in and if any rehabilitation is required to maintain the integrity of the highway. These annual surveys include the JPCP and the key concrete pavement characteristics that are used to determine the condition of the JPCP are the faulting at the joints and the roughness of the section. Since it is well known that concrete will exhibit slight movement when subjected to thermal variations it is possible that the these minor movements could have an impact on the measured slab properties used to rate the JPCP section. The focus of this research is to develop a methodology to use three dimensional technologies to capture JPCP surface data under a variety of thermal conditions, to develop a procedure to collect and analyze concrete temperature data, to develop a method to analyze the surface data and how to correlate all of the data that was collected. Three test sites were chosen that covered a total of 6 test sections that were composed of 25 slabs and 26 joints each. This provided a total of 150 slabs and 156 joints that were used for analysis. A single slab was selected as a test specimen to install thermal logging devices into so that the temperature distributions through the slab could be investigated. Three positions were monitored to determine if the position that the temperature gradient was measured was critical. It was found that the temperature followed a similar trend for all of the positions with the profiles being slightly shifted from each other. It was also concluded that the temperature in the bottom of the slab was approximately the same as the temperature in the base. It was discovered that the maximum positive temperature gradient occurred simultaneously with the maximum ambient air temperature and the maximum surface temperature. The results showed that the surface temperature followed a trend similar to the ambient air temperature. However the surface temperature was greater throughout the day. The faulting analysis results indicated that out of the 156 joints inspected only 15 showed a variation in the average faulting that was greater than the 0.5 mm (0.02 in) accuracy of the sensors used to collect the JPCP surface data. Further investigation revealed that there was no clear trend between the temperature change and the average faulting variation. It was concluded that if there was a change in the average faulting due to temperature it is smaller than what can be depicted by the sensing vehicle and it is less than the 1 mm (0.04 in) measurement accuracy that is specified in the American Association of State Highway and Transportation Officials (AASHTO) R36-04 specification which governs the accuracy requirements for automated faulting measurement methods. The International Roughness Index (IRI) was the method used to measure the roughness on each test site for each data collection run. This resulted in 336 IRI values that were inspected to determine whether there was an impact from the temperature variations. The IRI results showed that the roughness of the test sections did vary through the day. After it was found that the IRI did vary through the day the IRI distributions were compared to the temperature distribution and 7 out of the 12 distributions studied showed a weak correlation between the temperature and the IRI. The amount of variation in the IRI was not quantified because the exact accuracy of the IRI values attained from the sensing vehicle was unknown. However it was attempted to validate the system and determine the accuracy but one of the validation test sections showed disappointing results while the other two showed promising results. Further research is required to fully evaluate the sensing vehicles ability and accuracy when measuring the IRI. A procedure was also developed to extract the longitudinal and transverse curvature of the concrete pavement slabs. Three test slabs were selected at one of the test sites and curvature results were generated using the developed procedure. The curvature results were visually and quantitatively assessed. The visual analysis indicated that the curvature profiles measured by the 3D line lasers did change throughout the data collection, but the patterns did not follow what was expected and a correlation could not be created with the temperature. The quantitative results for the longitudinal curvature revealed that one of the slabs did show a pattern that followed the temperature changes during the data collection, but it did show as much as 4.65 mm (0.183 in) of change between consecutive data collection runs. The longitudinal curvature results for the other two slabs did not show a trend and exhibited unlikely changes in the curvature measured between consecutive data collection runs, which in some instances the deviation was as much as 12.09 mm (0.480 in). For the transverse curvature one of the slabs indicated that the curvature did not change during the data collection, while the other two showed sudden changes as high as 2.16 mm (0.085 in) between consecutive data collection runs. The developed procedure is only preliminary and needs to be further evaluated and refined for it to be able to adequately measure the curvature of as slab. The results also need to be verified using actual measured ground truth curvatures to determine the validity of using the developed procedure and the 3D line laser data to measure the curvature of concrete slabs. Once the procedure is proven to produce reliable results it should be compared to other curvature computation methods, such as those that utilize road profilers or LIDARs, to determine which method is the best.

Page generated in 0.092 seconds