• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visual experience-dependent oscillations in the mouse visual system

Samuel T Kissinger (8086100) 06 December 2019 (has links)
<p><a></a><a>The visual system is capable of interpreting immense sensory complexity, allowing us to quickly identify behaviorally relevant stimuli in the environment. It performs this task with a hierarchical organization that works to detect, relay, and integrate visual stimulus features into an interpretable form. To understand the complexities of this system, visual neuroscientists have benefited from the many advantages of using mice as visual models. Despite their poor visual acuity, these animals possess surprisingly complex visual systems, and have been instrumental in understanding how visual features are processed in the primary visual cortex (V1). However, a growing body of literature has shown that primary sensory areas like V1 are capable of more than basic feature detection, but can express neural activity patterns related to learning, memory, categorization, and prediction. </a></p> <p>Visual experience fundamentally changes the encoding and perception of visual stimuli at many scales, and allows us to become familiar with environmental cues. However, the neural processes that govern visual familiarity are poorly understood. By exposing awake mice to repetitively presented visual stimuli over several days, we observed the emergence of low frequency oscillations in the primary visual cortex (V1). The oscillations emerged in population level responses known as visually evoked potentials (VEPs), as well as single-unit responses, and were not observed before the perceptual experience had occurred. They were also not evoked by novel visual stimuli, suggesting that they represent a new form of visual familiarity in the form of low frequency oscillations. The oscillations also required the muscarinic acetylcholine receptors (mAChRs) for their induction and expression, highlighting the importance of the cholinergic system in this learning and memory-based phenomenon. Ongoing visually evoked oscillations were also shown to increase the VEP amplitude of incoming visual stimuli if the stimuli were presented at the high excitability phase of the oscillations, demonstrating how neural activity with unique temporal dynamics can be used to influence visual processing.</p> <p>Given the necessity of perceptual experience for the strong expression of these oscillations and their dependence on the cholinergic system, it was clear we had discovered a phenomenon grounded in visual learning or memory. To further validate this, we characterized this response in a mouse model of Fragile X syndrome (FX), the most common inherited form of autism and a condition with known visual perceptual learning deficits. Using a multifaceted experimental approach, a number of neurophysiological differences were found in the oscillations displayed in FX mice. Extracellular recordings revealed shorter durations and lower power oscillatory activity in FX mice. Furthermore, we found that the frequency of peak oscillatory activity was significantly decreased in FX mice, demonstrating a unique temporal neural impairment not previously reported in FX. In collaboration with Dr. Christopher J. Quinn at Purdue, we performed functional connectivity analysis on the extracellularly recorded spikes from WT and FX mice. This analysis revealed significant impairments in functional connections from multiple layers in FX mice after the perceptual experience; some of which were validated by another graduate student (Qiuyu Wu) using Channelrhodopsin-2 assisted circuit mapping (CRACM). Together, these results shed new light on how visual stimulus familiarity is differentially encoded in FX via persistent oscillations, and allowed us to identify impairments in cross layer connectivity that may underlie these differences. </p> <p>Finally, we asked whether these oscillations are observable in other brain areas or are intrinsic to V1. Furthermore, we sought to determine if the oscillating unit populations in V1 possess uniform firing dynamics, or contribute differentially to the population level response. By performing paired recordings, we did not find prominent oscillatory activity in two visual thalamic nuclei (dLGN and LP) or a nonvisual area (RSC) connected to V1, suggesting the oscillations may not propagate with similar dynamics via cortico-thalamic connections or retrosplenial connections, <a>but may either be uniquely distributed across the visual hierarchy or predominantly</a> restricted to V1. Using K-means clustering on a large population of oscillating units in V1, we found unique temporal profiles of visually evoked responses, demonstrating distinct contributions of different unit sub-populations to the oscillation response dynamics.</p>

Page generated in 0.1377 seconds