• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 3
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 12
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Phase structure of five-dimensional anisotropic lattice gauge theories

Lambrou, Eliana January 2016 (has links)
The idea that we live in a higher-dimensional space was first introduced almost 100 years ago. In the past two decades many extra-dimensional models have been proposed in order to solve fundamental problems of nature such as the hierarchy problem. Most of them need exploration via non-perturbative approaches and Lattice Gauge Theory provides a tool for doing this. In this thesis, we make attempts to find a non-perturbative way to localize gauge fields that arise from five-dimensional SU(2) gauge theories on 3-branes. In 1984, it was proposed that the phase diagram of anisotropic extra-dimensional lattice gauge theories inherits a new phase, called the "layered" phase, where the gauge fields behave as four-dimensional ones. This was shown for the abelian case, but the existence of this new phase for the simplest non-abelian group, SU(2), was still in doubt. We investigated this system in large volumes using Monte Carlo simulations and we could not find a second order phase transition from a five-dimensional to a continuous four-dimensional theory when all directions were kept large. This made the model unattractive for further exploration as nothing suggests that a non-trivial fixed point could exist. The above investigation was done in a flat background metric. We extended the previous work by putting our theory into a slice of AdS5 space, usually called the warped background. The motivation for this is that our SU(2) theory looks like the gauge-sector of the Randall-Sundrum model, which does not have a concrete solution to the problem of localization of the gauge fields on a 3-brane. We carried out our investigation using the Mean-Field Approach and we present novel results for the phase diagram and measurements of important observables. In our implementation we have a finite extent of the extra dimension and one layer (or 3-brane) on each extra-dimensional coordinate. At weak coupling, we observed that each layer decouples one at a time in the transition to the fully layered phase of the system, forming a mixed phase, whereas there is a strong and sharp transition between the fully layered and the strong-coupling phase. Within the mixed phase, close to the transition into the layered phase, we found evidence that the system is four-dimensional acquiring a Yukawa mass and resembling a Higgs-like phase. The mixed phase grows as the curvature increases suggesting that for an infinite extra dimension the entire weak-coupling phase is mixed.
22

Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.

Juan Pablo Ibieta Jimenez 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
23

Variational Quantum Simulations of Lattice Gauge Theories

Stornati, Paolo 17 May 2022 (has links)
Simulationen von Gittereichtheorien spielen eine grundlegende Rolle bei First-Principles-Rechnungen im Kontext der Hochenergiephysik. Diese Arbeit zielt darauf ab, aktuelle Simulationsmethoden für First-Principle-Berechnungen zu verbessern und diese Methoden auf relevante physikalische Modelle anzuwenden. Wir gehen dieses Problem mit drei verschiedenen Ansätzen an: maschinelles Lernen, Quantencomputing und Tensornetzwerke. Im Rahmen des maschinellen Lernens haben wir eine Methode zur Schätzung thermodynamischer Observablen in Gitterfeldtheorien entwickelt. Genauer gesagt verwenden wir tiefe generative Modelle, um den absoluten Wert der freien Energie abzuschätzen. Wir haben die Anwendbarkeit unserer Methode durch die Untersuchung eines Spielzeugmodells demonstriert. Unser Ansatz erzeugt genauere Messungen im Vergleich mit dem Standard-Markov-Ketten-Monte-Carlo-Verfahren, wenn wir einen Phasenübergangspunkt überqueren. Im Kontext des Quantencomputings ist es unser Ziel, die aktuellen Algorithmen für Quantensimulationen zu verbessern. In dieser Arbeit haben wir uns mit zwei Themen moderner Quantencomputer befasst: der Quantenrauschunterdrückung und dem Design guter parametrischer Quantenschaltkreise. Wir haben eine Minderungsroutine zum Auslesen von Bit-Flip-Fehlern entwickelt, die Quantensimulationen drastisch verbessern kann. Wir haben auch eine dimensionale Aussagekraftanalyse entwickelt, die überflüssige Parameter in parametrischen Quantenschaltkreisen identifizieren kann. Darüber hinaus zeigen wir, wie man Expressivitätsanalysen mit Quantenhardware effizient umsetzen kann. Im Kontext des Tensornetzwerks haben wir ein Quantenbindungsmodell U(1) und 2+1-Dimensionen in einer Leitergeometrie mit DMRG untersucht. Unser Ziel ist es, die Eigenschaften des Grundzustands des Modells in einem endlichen chemischen Potential zu analysieren. Wir haben unterschiedliche Windungszahlsektoren beobachtet, als wir chemisches Potential in das System eingebracht haben. / Simulations of lattice gauge theories play a fundamental role in first principles calculations in the context of high energy physics. This thesis aims to improve state-of-the-art simulation methods for first-principle calculations and apply those methods to relevant physical models. We address this problem using three different approaches: machine learning, quantum computing, and tensor networks. In the context of machine learning, we have developed a method to estimate thermodynamic observables in lattice field theories. More precisely, we use deep generative models to estimate the absolute value of the free energy. We have demonstrated the applicability of our method by studying a toy model. Our approach produces more precise measurements in comparison with the standard Markov chain Monte Carlo method when we cross a phase transition point. In the context of quantum computing, our goal is to improve the current algorithms for quantum simulations. In this thesis, we have addressed two issues on modern quantum computers: the quantum noise mitigation and the design of good parametric quantum circuits. We have developed a mitigation routine ffor read-out bit-flip errors that can drastically improve quantum simulations. We have also developed a dimensional expressiveness analysis that can identify superfluous parameters in parametric quantum circuits. In addition, we show how to implement expressivity analysis using quantum hardware efficiently. In the context of the tensor network, we have studied a quantum bond model U(1) and 2+1 dimensions in a ladder geometry with DMRG. Our goal is to analyze the properties of the ground state of the model in a finite chemical potential. We have observed different winding number sectors when we have introduced chemical potential in the system.
24

Limites topológicos do modelo Gauge-Higgs com simetria Z(2) em uma rede bidimensional / Topological Limits in the Gauge-Higgs Model with Z(2) Symmetry in a Bidimensional Lattice

Aza, Nelson Javier Buitrago 04 November 2013 (has links)
Nesta dissertação estudamos as teorias de gauge acoplada com campos de matéria em variedades bidimensionais. Para isso, descrevemos primeiro um formalismo em duas e três dimensões o qual é baseado na ideia de Kuperberg de definir um invariante topológico em três dimensões usando álgebras de Hopf e diagramas de Heegaard. O uso do formalismo é útil para este trabalho pois é fácil a identificação de limites topológicos sem resolver o modelo. Também escrevemos o modelo de gauge com campos de matéria usando uma fixação de gauge chamada de gauge unitário. Trabalhamos com o grupo abeliano $\\mathbb_$ e explicamos com detalhe o caso $\\mathbb_$. Calculamos as funções de partição e loops de Wilson para este grupo nos diferentes limites topológicos. Mostramos que existem casos nos quais os resultados dependem da triangulação mas de maneira trivial, estes casos foram chamados de quase-topológicos. / In this thesis we study gauge theories coupled with matter fields in two-dimensional manifolds. In order to proceed we first describe a formalism in two and three dimensions which is based on the idea of Kuperberg of defining a topological invariant in three dimensions using Hopf algebras and Heegaard diagrams. The use of this formalism is useful here because it is easy to identify topological limits without solving the model. Furthermore, we write the gauge model with matter fields choosing the unitary gauge. We work with abelians groups Z(n) and explain the Z(2) case in detail. We calculate partition functions and Wilson loops for this group in the different topological limits. We show that, there were cases in which the results depended on the triangulation but in a trivial way, these cases are called quasi-topological.
25

Semiclassical analysis of loop quantum gravity

Conrady, Florian 12 September 2006 (has links)
In dieser Dissertation untersuchen und entwickeln wir neue Methoden, die dabei helfen sollen eine effektive semiklassische Beschreibung der kanonischen Loop-Quantengravitation und der Spinfoam-Gravitation zu bestimmen. Einer kurzen Einführung in die Loop-Quantengravitation folgen drei Forschungsartikel, die die Resultate der Doktorarbeit präsentieren. Im ersten Artikel behandeln wir das Problem der Zeit und einen neuen Vorschlag zur Implementierung von Eigenzeit durch Randbedingungen an Pfadintegrale: wir untersuchen eine konkrete Realisierung dieses Formalismus für die freie Skalarfeldtheorie. Im zweiten Artikel übersetzen wir semiklassische Zustände der linearisierten Gravitation in Zustände der Loop-Quantengravitation. Deren Eigenschaften deuten an, wie sich Semiklassizität im Loop-Formalismus manifestiert, and wie man dies benützen könnte, um semiklassische Entwicklungen herzuleiten. Im dritten Teil schlagen wir eine neue Formulierung von Spinfoam-Modellen vor, die vollständig Triangulierungs- und Hintergrund-unabhängig ist: mit Hilfe einer Symmetrie-Bedingung identifizieren wir Spinfoam-Modelle, deren Triangulierungs-Abhängigkeit auf natürliche Weise entfernt werden kann. / In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed.
26

The static quark potential and scaling behavior of SU(3) lattice Yang-Mills theory

Necco, Silvia 15 May 2003 (has links)
Das Potential zwischen einem statischen Quark und Antiquark in der reinen SU(3) Yang-Mills Theorie wird auf dem Gitter in der Region von kurzen bis mittleren Abstaenden (0.05 fm < r < 0.8fm) nichtperturbativ ausgewertet. Renormalisierte dimensionslose Observablen werden zum Kontinuumslimes extrapoliert und bestaetigen damit die theoretische Erwartung, dass die fuehrenden Gitterartifakte quadratisch im Gitterabstand sind. Bei hohen Energien werden die Resultate mit der parameterfreien Vorhersage der Stoerungtheorie verglichen; diese wird erreicht, indem man die Renormierungsgruppengleichung in zwei- und drei-Loop-Ordnung loest. Die Wahl des Renormierungschemas fuer die Definition der laufenden Kopplung ist wichtig fuer die Genauigkeit der perturbativen Vorhersage. Wenn man die laufende Kopplung durch die Kraft definiert, ist Stoerungstheorie bis zu alpha ~ 0.3 anwendbar, waehrend mit dem statischen Potential nur bis zu alpha ~ 0.15. In der Region, in der Stoerungstheorie zuverlaessig sein sollte, wird kein grosser unerwarteter nichtperturbativer Term beobachtet: im Gegenteil, man findet eine gute uebereinstimmung zwischen Stoerungtheorie und unseren nicht-perturbativen Daten. Fuer grosse Quark-Antiquark Abstaende werden unsere Ergebnisse mit den Vorhersagen einer effektiven bosonischen Stringtheorie verglichen, und man findet bereits eine ueberraschend gute Uebereinstimmung fuer Abstaende > 0.5 fm. Im zweiten Teil dieser Arbeit sind Universalitaet und Skalierungsverhalten von unterschiedlichen Formulierungen der Yang-Mills Theorie auf dem Gitter diskutiert. Insbesondere werden Iwasaki- und DBW2- Wirkungen untersucht, die durch Renormierungsgruppe (RG) Argumente formuliert wurden. Die Laengenskala r_0 ~ 0.5 fm wird bei einigen Gitterabstaenden ausgewertet und die Skalierung der kritischen Deconfinement Temperatur T_c * r_0 wird mit den Resultaten analysiert und konfrontiert, die mit der ueblichen Wilson Plaquette Wirkung erreicht werden. Da sie im Kontinuumslimes uebereinstimmen, wird die Universalitaet bestaetigt. Die Groesse die man benutzt, um die Skala einzustellen, muss mit Vorsicht gewaehlt werden, um grosse systematische Ungenauigkeiten zu vermeiden. Fuer diesen Zweck zeigt sich r_0 als angebracht. Fuer die kritische Temperatur zeigen die Daten, die mit RG Wirkungen erhalten werden, verringerte Gitterartifakte, vor allem mit der Iwasaki Wirkung. Schliesslich wird die Masse der 0^{++}- und 2^{++}-Glueballs ausgewertet, indem man die Observablen m_0^{++} *r_0 und m_2^{++}*r_0 betrachtet. Jedoch kann keine genaue Schlussfolgerung ueber das Scalingverhalten fuer diese Observablen gezogen werden. Eine besondere Aufmerksamkeit ist der Verletzung der physikalischen Positivitaet, die in diesen Wirkungen auftritt und den Konsequenzen in der Extraktion der physikalischen Groessen aus euklidischen Korrelationsfunktionen gewidmet. / The potential between a static quark and antiquark in pure SU(3) Yang-Mills theory is evaluated non-perturbatively through computations on the lattice in the region from short to intermediate distances (0.05 fm < r 0.5 fm. In the second part of this work, universality and scaling behavior of different formulations of Yang-Mills theory on the lattice are discussed. In particular, the Iwasaki and DBW2 action are investigated, which were obtained by following renormalization group (RG) arguments. The length scale r_0 ~ 0.5 fm is evaluated at several lattice spacings and the scaling of the critical deconfinement temperature T_c*r_0 is analyzed and confronted with the results obtained with the usual Wilson plaquette action. Since they agree in the continuum limit, the universality is confirmed. We remark that the quantity to use to set the scale has to be chosen with care in order to avoid large systematic uncertainties and $\rnod$ turns out to be appropriate. For the critical temperature the data obtained with RG actions show reduced lattice artifacts, above all with the Iwasaki action. Finally the mass of the glueballs 0^{++} and 2^{++} is evaluated by considering the quantities m_0^{++}*r_0 and m_2^{++}*r_0; however for those observables no clear conclusion about the scaling behavior can be drawn. Particular attention is dedicated to the violation of physical positivity which occur in these actions and the consequences in the extraction of physical quantities from Euclidean correlation functions.
27

Limites topológicos do modelo Gauge-Higgs com simetria Z(2) em uma rede bidimensional / Topological Limits in the Gauge-Higgs Model with Z(2) Symmetry in a Bidimensional Lattice

Nelson Javier Buitrago Aza 04 November 2013 (has links)
Nesta dissertação estudamos as teorias de gauge acoplada com campos de matéria em variedades bidimensionais. Para isso, descrevemos primeiro um formalismo em duas e três dimensões o qual é baseado na ideia de Kuperberg de definir um invariante topológico em três dimensões usando álgebras de Hopf e diagramas de Heegaard. O uso do formalismo é útil para este trabalho pois é fácil a identificação de limites topológicos sem resolver o modelo. Também escrevemos o modelo de gauge com campos de matéria usando uma fixação de gauge chamada de gauge unitário. Trabalhamos com o grupo abeliano $\\mathbb_$ e explicamos com detalhe o caso $\\mathbb_$. Calculamos as funções de partição e loops de Wilson para este grupo nos diferentes limites topológicos. Mostramos que existem casos nos quais os resultados dependem da triangulação mas de maneira trivial, estes casos foram chamados de quase-topológicos. / In this thesis we study gauge theories coupled with matter fields in two-dimensional manifolds. In order to proceed we first describe a formalism in two and three dimensions which is based on the idea of Kuperberg of defining a topological invariant in three dimensions using Hopf algebras and Heegaard diagrams. The use of this formalism is useful here because it is easy to identify topological limits without solving the model. Furthermore, we write the gauge model with matter fields choosing the unitary gauge. We work with abelians groups Z(n) and explain the Z(2) case in detail. We calculate partition functions and Wilson loops for this group in the different topological limits. We show that, there were cases in which the results depended on the triangulation but in a trivial way, these cases are called quasi-topological.
28

QCD na rede: um estudo não-perturbativo no calibre de Feynman / Lattice QCD: a nonperturbative study in the Feynman Gauge

Santos, Elton Márcio da Silva 16 August 2011 (has links)
O comportamento infra-vermelho dos propagadores de glúons e de ghosts é de fundamental importância para o entendimento do limite de baixas energias da cromodinâmica quântica (QCD), especialmente no que diz respeito ao problema do confinamento de quarks e de glúons. O objetivo desta tese é implementar um novo método para o estudo do propagador de glúons no calibre covariante linear para a QCD na rede. Em particular, analisamos em detalhe a nova implementação proposta e estudamos os algoritmos para fixação numérica deste calibre. Note que a fixação numérica da condição de calibre de Feynman apresenta vários problemas não encontrados nos casos de Landau e de Coulomb, o que impossibilitou por longo tempo o seu estudo adequado. De fato, a definição considerada inicialmente, por Giusti et. al., é de difícil implementação numérica e introduz condições espúrias na fixação de calibre. Como consequência, os únicos estudos efetuados anteriormente referem-se aos propagadores de glúons e de quarks em redes relativamente pequenas, não permitindo uma análise cuidadosa do limite infra-vemelho da QCD neste calibre. A obtenção de novas soluções para a implementação do calibre de Feynman na rede é portanto de grande importância para viabilizar estudos numéricos mais sistemáticos dos propagadores e dos vértices neste calibre e, em geral, no calibre covariante linear. / The infrared behavior of gluon and ghost propagators is of fundamental importance for the understanding of the low-energy limit of quantum chromodynamics (QCD), especially with respect to the problem of the confinement of quarks and gluons. The goal of this thesis is to implement a new method to study the gluon propagator in the linear covariant gauge in lattice QCD. In particular, we analyze in detail the newly proposed implementation and study the algorithms for numerically fixing this gauge. Note that the numerical fixing of the Feynman gauge condition poses several problems that are not present in the Landau and Coulomb cases, which prevented it from being properly studied for a long time. In fact, the definition considered initially, by Giusti et. al., is of difficult numerical implementation and introduces spurious conditions into the gauge fixing. As a consequence, the only studies carried out previously involved gluon and quark propagators on relatively small lattices, hindering a careful analysis of the infrared limit of QCD in this gauge. Obtaining new solutions for the implementation of the Feynman gauge on the lattice is therefore of great importance to enable more systematic numerical studies of propagators and vertices in this gauge and, in general, in the linear covariant gauge.
29

QCD na rede: um estudo não-perturbativo no calibre de Feynman / Lattice QCD: a nonperturbative study in the Feynman Gauge

Elton Márcio da Silva Santos 16 August 2011 (has links)
O comportamento infra-vermelho dos propagadores de glúons e de ghosts é de fundamental importância para o entendimento do limite de baixas energias da cromodinâmica quântica (QCD), especialmente no que diz respeito ao problema do confinamento de quarks e de glúons. O objetivo desta tese é implementar um novo método para o estudo do propagador de glúons no calibre covariante linear para a QCD na rede. Em particular, analisamos em detalhe a nova implementação proposta e estudamos os algoritmos para fixação numérica deste calibre. Note que a fixação numérica da condição de calibre de Feynman apresenta vários problemas não encontrados nos casos de Landau e de Coulomb, o que impossibilitou por longo tempo o seu estudo adequado. De fato, a definição considerada inicialmente, por Giusti et. al., é de difícil implementação numérica e introduz condições espúrias na fixação de calibre. Como consequência, os únicos estudos efetuados anteriormente referem-se aos propagadores de glúons e de quarks em redes relativamente pequenas, não permitindo uma análise cuidadosa do limite infra-vemelho da QCD neste calibre. A obtenção de novas soluções para a implementação do calibre de Feynman na rede é portanto de grande importância para viabilizar estudos numéricos mais sistemáticos dos propagadores e dos vértices neste calibre e, em geral, no calibre covariante linear. / The infrared behavior of gluon and ghost propagators is of fundamental importance for the understanding of the low-energy limit of quantum chromodynamics (QCD), especially with respect to the problem of the confinement of quarks and gluons. The goal of this thesis is to implement a new method to study the gluon propagator in the linear covariant gauge in lattice QCD. In particular, we analyze in detail the newly proposed implementation and study the algorithms for numerically fixing this gauge. Note that the numerical fixing of the Feynman gauge condition poses several problems that are not present in the Landau and Coulomb cases, which prevented it from being properly studied for a long time. In fact, the definition considered initially, by Giusti et. al., is of difficult numerical implementation and introduces spurious conditions into the gauge fixing. As a consequence, the only studies carried out previously involved gluon and quark propagators on relatively small lattices, hindering a careful analysis of the infrared limit of QCD in this gauge. Obtaining new solutions for the implementation of the Feynman gauge on the lattice is therefore of great importance to enable more systematic numerical studies of propagators and vertices in this gauge and, in general, in the linear covariant gauge.
30

Nonequilibrium dynamics in lattice gauge theories: disorder-free localization and string breaking

Verdel Aranda, Roberto 01 March 2022 (has links)
Lattice gauge theories are crucial for our understanding of many physical phenomena ranging from fundamental particle interactions in high-energy physics to frustration and topological order in condensed matter. Hence, many equilibrium aspects of these theories have been studied intensively over the past decades. Recent developments, however, have shown that the study of nonequilibrium dynamics in lattice gauge theories also provides a very fertile ground for interesting phenomena. This thesis is devoted to the study of two particular dynamical processes in lattice gauge theories and related quantum spin models. First, we show that an interacting two-dimensional lattice gauge theory can exhibit disorder-free localization: a mechanism for ergodicity breaking due to local constraints imposed by gauge invariance. This result is particularly remarkable as the stability in two dimensions of the more conventional (disorder-induced) many-body localization is still debated. Concretely, we show this type of nonergodic behavior in the quantum link model. Our central result is based on a bound on the localization-delocalization transition, which is established through a concomitant classical percolation problem. Further, we develop a numerical method dubbed “variational classical networks”, to study the quantum dynamics in this system. This technique provides an efficient and perturbatively controlled representation of the wave function in terms of networks of classical spins akin to artificial neural networks. This allows us to identify distinguishing transport properties in the localized and ergodic phases, respectively. In the second problem, we study the dynamics of string breaking, a key process in confining gauge theories, where a string connecting two charges decays due to the creation of new particle-antiparticle pairs. Our main result here is that string breaking can also be observed in quantum Ising chains, in which domain walls get confined either by a symmetry-breaking field or by long-range interactions. We identify, in general, two distinct stages in this process. While at the beginning the initial charges remain stable, the string can exhibit complex dynamics with strong quantum correlations. We provide an effective description of this string motion, and find that it can be highly constrained. In the second stage, the string finally breaks at a timescale that depends sensitively on the initial separation of domain walls. We observe that the second stage can be significantly delayed as a consequence of the dynamical constraints appearing in the first stage. Finally, we discuss the generalization of our results to low-dimensional confining gauge theories. As a general aspect of this work, we discuss how the phenomena studied here could be realized experimentally with current and future technologies in quantum simulation. Furthermore, the methods developed in this thesis can also be applied to other lattice gauge theories and constrained quantum many-body models, not only to address purely theoretical questions but also to provide a theoretical description of experiments in quantum simulators. / Gittereichtheorien sind ein wichtiger Bestandteil im Verständnis vieler physikalischer Phänomene und Grundlage verschiedener Theorien, welche sich von der elementaren Wechselwirkungen in der Hochenergiephysik, Frustration in Spinmodellen bis hin zu topologischer Ordnung in der Festkörperphysik erstrecken. Die Eigenschaften von Eichtheorien im Gleichgewicht waren in den letzten Jahrzehnten ein zentraler Punkt der Forschung. Obwohl sich Untersuchungen der Dynamik jenseits des Gleichgewichs als eine große Herausfordung dargestellt haben, haben kürzliche Erkenntnisse gezeigt, dass die Dynamik in Gittereichtheorien überraschende und interessante Entdeckungen bereithält. Diese Dissertation behandelt zwei zentrale dynamische Prozesse in Gittereichtheorien und verwandten Spinmodellen. Einerseits soll die Dynamik von zweidimensionalen und wechselwirkenden Gittereichtheorien untersucht werden im Falle des sogenan- nten Quanten-Link-Modells untersucht werden. Entgegen der Ergodenhypothese zeigt das System Lokalisierung ohne Unordnung aufgrund lokaler Zwangsbedingungen durch Eininvarianz. Dieses Ergebnis ist insofern bemerkenswert, als die gewöhnliche, durch Unordnung induzierte, Vielteilchenlokalisierung in zwei Dimensionen umstritten ist. Als ein Hauptergebnis finden wir einen Übergang zwischen einer lokalisierten und ergodischen Phase, dessen Existenz durch ein zugehöriges klassisches Perkolationsproblem gezeigt werden konnte. Die quantenmechanischen Transporteigenschaften, elementar verschieden in der lokalisierten und ergodischen Phase, werden charakterisiert und untersucht. Die Lösung der quantenmechanischen Zeitentwicklung wird durch eine methodische Weiterentwicklung der sogenannten „variationellen klassischen Netzwerke“ erreicht Diese Methode stellt eine perturbative, aber kontrollierte Repräsentation von zeitentwickelten quantenmechanischen Wellenfunktionen dar in Form von Netzwerken klassischer Spins, ähnlich wie bei einem künstlichen neuronalen Netz. Im zweiten Teil untersuchen wir die Dynamik eines Schlüsselprozesses in Eichtheorien mit Confinement, welcher als „String-Breaking“ bezeichnet wird In diesem Prozess zerfällt der der Strang, der zwei elementare Ladungen verbindet, durch die Bildung neuer Teilchen-Antiteilchen-Paare. Ein Hauptresultat dieser Arbeit ist die Beobachtung dieses dynamischen Phänomens in Quantum-Ising-Ketten und damit in Systemen ohne Eichinvarianz. Das Confinement entsteht dabei zwischen Domänenwänden entweder durch eine langreichweitige Wechselwirkung zwischen den beteiligten Spins oder durch symmetriebrechende Magnetfelder. Es wird gezeigt, dass während des „String-breaking“ Prozesses das Modell zwei Phasen durchläuft: Während zu Beginn die Anfangsladungen stabil bleiben, weist der Strang eine komplexe Dynamik mit starken Quantenkorrelationen auf. Für diese erste Phase wird eine effektive Beschreibung eingeführt, um die verschiedenen Aspekte zu analysieren und zu verstehen. Die Zeitskalen zur Destabilisierung des Strangs innerhalb einer zweiten Phase zeigen eine starke Abhängigkeit von der anfänglichen Trennung der Domänenwände. Es wird gezeigt, dass die zweite Phase als Konsequenz der dynamischen Beschränkungen der ersten Phase signifikant verzögert werden kann. Diese Resultate können in niedrigdimensionalen Eichtheorien verallgemeinert werden. Weiterführend sollen die Ergebnisse als Grundlage einer experimentellen Realisierung durch Quantensimulationen dienen. Die entwickelten Methoden können auf andere Eichtheorien und verwandten Vielteilchenmodellen angewendet werden und bieten eine Plattform für weitere Ansätze.

Page generated in 0.1029 seconds