• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zobecňování výsledků týkajících se problému splnitelnosti podmínek na nekonečné algebry / Generalizing CSP-related results to infinite algebras

Olšák, Miroslav January 2019 (has links)
The recent research on constraint satisfaction problems (CSPs) on fixed finite templates provided useful tools for computational complexity and universal algebra. However, the research mainly focused on finite relational structures, and consequently, finite algebras. We pursue a generalization of these tools and results into the domain of infinite algebras. In particular, we show that despite the fact that the Maltsev condition s(r, a, r, e) = s(a, r, e, a) does not characterize Taylor algebras (i.e., algebras that satisfy a nontrivial idem- potent Maltsev condition) in general, as it does in the finite case, there is another strong Maltsev condition characterizing Taylor algebras, and s(r, a, r, e) = s(a, r, e, a) characterizes another interesting broad class of algebras. We also provide a (weak) Maltsev condition for SD(∧) algebras (i.e., algebras that satisfy an idem- potent Maltsev condition not satisfiable in a module). Beyond Maltsev conditions, we study loop lemmata and, in particular, reprove a well known finite loop lemma by two different general (infinite) approaches.

Page generated in 0.0433 seconds