1 |
The role of protein kinase C isotypes in the proliferation and differentiation of human leukemia cellsMurray, Nicole Renee January 1995 (has links)
No description available.
|
2 |
Quinones and Analogues as Cytoprotectants for Cultured Mammalian CellsJanuary 2012 (has links)
abstract: It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be linked with dysfunctional complexes in the mitochondrial respiratory chain, increased oxidative stress, and potential cell death. Increased understanding of the pathophysiology of this disease has enabled the development of various therapeutic strategies aimed at restoring mitochondrial respiration. This thesis contains an analysis of the biological activity of several classes of antioxidants against oxidative stress induced by diethyl maleate in Friedreich's Ataxia lymphocytes and CEM leukemia cells. Analogues of vitamin E α-tocopherol have been shown to protect cells under oxidative stress. However, these same analogues show various levels of inhibition towards the electron transport chain complex I. Bicyclic pyridinols containing a ten carbon substituent provided favorable cytoprotection. N-hydroxy-4-pyridone compounds were observed to provide little protection. Similarly, analogues of CoQ10 in the form of pyridinol and pyrimidinol compounds also preserved cell viability at low concentrations. / Dissertation/Thesis / M.S. Biochemistry 2012
|
3 |
Motilita leukemických buněk analyzovaná nekoherentním holografickým kvantitativním zobrazováním fáze / Analysis of motility in leukemia cells using incoherent holographic quantitative phase imagingSmrčková, Zuzana January 2021 (has links)
This diploma thesis deals with the issue of motility analysis in leukemia cells. An accurate description of the cell movement and the detection of differences in motility under experimental conditions can be obtained by quantitative analysis of cell motility using time-lapse recording. The first part of this work describes various types of tumor cell migraton. The second part focuses on methods of analysis of cell motility in tissue culture using time-lapse recording, which include image acquisition and processing. Part of this chapter describes a coherence-controlled holographic microscope, which was used in the practical part and for which an insert was designed to ensure the exact and stable position of the individual chambers. The last part is focused on the research of leukemic cell motility, which is concluded by a discussion of the obtained results. The appendix contains a published study included acknowledgement to the author of this diploma thesis for participation in the project.
|
Page generated in 0.069 seconds