• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 14
  • 11
  • 7
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 64
  • 26
  • 23
  • 19
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Developing Levitation Laser-Fused Glasses as Proxies for Lower Mantle Experiments: a Methodological Approach

zur Loye, Thomas Edwards 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Observations of heterogeneities in Earth’s mantle motivate studies of mantle phase assemblages with variable composition. As samples cannot be directly collected from these regions, synthetic glasses can act as analogues for mantle melt and starting materials for high-pressure synthesis of stable mantle minerals in experiments. Here, I develop a specific methodology to produce homogeneous glasses that accurately span the composition space from enstatite (MgSiO3) to forsterite (Mg2SiO4), as well as Fe-bearing enstatite ((Mg0.1Fe0.9)SiO3 and ((Mg0.95Fe0.05)(Si0.95Fe0.05)O3) with variable oxidation states. This study systematically tests and iterates upon glass synthesis methods using an aerodynamic levitation laser furnace, in which a spherical glass sample levitates on a gas stream flowing vertically through a conical nozzle, while being heated from above with a 400 W CO2 laser. With sample diameters of 0.6-2.0 mm, shutting off the laser results in supercooling of levitated spheres at rates between 350 and 1350 °C/s. Sample preparation begins with grinding and mixing pure oxide powders in an agate mortar and pestle, followed by heating in a high temperature oven to devolatilize the mixture. Powders (0.5-7 mg aliquots) are fused into spheres in a copper hearth plate. To tune Fe valency and vitrify each sphere, samples are then levitated on flows of Ar, O2, 5% CO in Ar, 5% CO2 in Ar, or combinations of two of these gases, while being heated with the laser to temperatures above the liquidus for each composition for ~10 s before quenching. After x-ray diffraction (XRD) analyses confirm vitrification, a dual polish is applied, exposing parallel flat polished surfaces for scanning electron microscope (SEM) and electron probe microanalyzer analyses (EPMA). Back-scattered electron images and energy-dispersive x-ray spectroscopy (EDS) analyses of the spheres are obtained first on the SEM to gauge compositional accuracy and homogeneity, then EPMA analyses determine quantitatively the samples’ compositions. Once fully characterized, these glasses can be used in diamond anvil cell experiments, where they can act as proxies for an otherwise inaccessible area of the Earth. In addition to the development of this methodology, two web applications produced during this research aid in visualization of both data logs and analytical results.
42

Evaporation, Precipitation Dynamics And Instability Of Acoustically Levitated Functional Droplets

Saha, Abhishek 01 January 2012 (has links)
Evaporation of pure and binary liquid droplets is of interest in thermal sprays and spray drying of food, ceramics and pharmaceutical products. Understanding the rate of heat and mass transfer in any drying process is important not only to enhance evaporation rate or vapor-gas mixing, but also to predict and control the final morphology and microstructure of the precipitates. Acoustic levitation is an alternative method to study micron-sized droplets without wall effects, which eliminates chemical and thermal contamination with surfaces. This work uses an ultrasonic levitation technique to investigate the vaporization dynamics under radiative heating, with focus on evaporation characteristics, precipitation kinetics, particle agglomeration, structure formation and droplet stability. Timescale and temperature scales are developed to compare convective heating in actual sprays and radiative heating in the current experiments. These relationships show that simple experiments can be conducted in a levitator to extrapolate information in realistic convective environments in spray drying. The effect of acoustic streaming, droplet size and liquid properties on internal flow is important to understand as the heat and mass transfer and particle motion within the droplet is significantly controlled by internal motion. Therefore, the droplet internal flow is characterized by Particle Image Velocimetry for different dropsize and viscosity. Nanosuspension droplets suspended under levitation show preferential accumulation and agglomeration kinetics. Under certain conditions, they form bowl shaped structures upon complete evaporation. At higher concentrations, this initial bowl shaped structure morphs into a ring structure. Nanoparticle iv migration due to internal recirculation forms a density stratification, the location of which depends on initial particle concentration. The time scale of density stratification is similar to that of perikinetic-driven agglomeration of particle flocculation. The density stratification ultimately leads to force imbalance leading to a unique bowl-shaped structure. Chemically active precursor droplet under acoustic levitation shows events such as vaporization, precipitation and chemical reaction leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process followed by formation of precipitate. Ex-situ analyses using TEM and SEM reveal highly porous morphology with trapped gas pockets and nanoceria crystalline structures at 70oC. Inhomogeneity in acoustic pressure around the heated droplet can induce thermal instability. Short wavelength (Kelvin-Helmholtz) instability for diesel and bio-diesel droplets triggers this secondary atomization, which occurs due to relative velocity between liquid and gas phase at the droplet equator. On the other hand, liquids such as Kerosene and FC43 show uncontrollable stretching followed by a catastrophic break-up due to reduction in surface tension and viscosity coupled with inhomogeneity of pressure around the droplet. Finally, a scaling analysis has been established between vaporizing droplets in a convective and radiative environment. The transient temperature normalized by the respective scales exhibits a unified profile for both modes of heating. The analysis allows for the prediction of required laser flux in the levitator experiments to show its equivalence in a corresponding heated gas stream. The theoretical equivalence shows good agreement with experiments for a range of droplet sizes.
43

The Oxidation Kinetics of Free Falling Iron Droplets

Vig, Satinder Kumar 09 1900 (has links)
<p> Levitation melting was used to study the oxidation kinetics of free falling iron droplets. Single droplets of Armco iron were deoxidized and allowed to fall through oxidizing columns of known heights and then quenched in Silicone Oil. The rate of oxygen pick up by a droplet was found to be dependent upon its initial temperature, its size, and the composition of the reacting gas. The proposed mechanism is presented with kinetic data.</p> / Thesis / Master of Engineering (MEngr)
44

Vaporization Characteristics Of Pure And Blended Biofuel Droplet Injected Into Hot Stream Of Air

Saha, Abhishek 01 January 2010 (has links)
The combustion dynamics and stability are dependent on the quality of mixing and vaporization of the liquid fuel in the pre-mixer. The vaporization characteristics of different blends of biofuel droplets injected into the air stream in the pre-mixer are modeled in this current study. The focus of this work is on the blended alternate fuels which are lately being considered for commercial use. Two major alternate fuels analyzed are ethanol and Rapeseed Methyl Esters (RME). Ethanol is being used as a substitute for gasoline, while RME is an alternative for diesel. In the current work, the vaporization characteristics of a single droplet in a simple pre-mixer has been studied for pure ethanol and RME in a hot air jet at a temperature of 800 K. In addition, the behavior of the fuels when they are mixed with conventional fuels like gasoline and diesel is also studied. Temperature gradients and vaporization efficiency for different blends of bio-conventional fuel mixture are compared with one another. The model was validated using an experiment involving convection heating of acoustically levitated fuel droplets and IR-thermography to visualize and quantify the vaporization characteristics of different biofuel blends downstream of the pre-mixer. Results show that the 20 µm droplets of ethanol-gasoline 50-50 blend is completely evaporated in 1.1 msec, while 400 µm droplets vaporized only 65% in 80 msec. In gasoline-ethanol blends, pure gasoline is more volatile than pure ethanol. In spite of having higher vapor pressure, ethanol vaporizes slowly compared to gasoline, due to the fact that latent heat of vaporization is higher for ethanol. For gasoline-ethanol blended fuels, ethanol component vaporizes faster. This is because in blended fuels gasoline and ethanol attain the same temperature and ethanol vapor pressure is higher than that for gasoline. In the case of RME-diesel blends, initially diesel vaporizes faster up to 550K, and above this temperature, vapor pressure of RME becomes dominant resulting in faster vaporization of RME. Current work also looks into the effect of non-volatile impurities present in biofuels. Depending on source and extraction process, fuels carry impurities which impact vaporization process. In this work these effects on ethanol blended fuel have been studied for different concentration of impurities. The presence of non-volatile impurities reduces the vaporization rate by reducing the mass fraction of the volatile component at the surface. However, impurities also increase the surface temperature of the droplet. Finally, the effects of hot and cold spots in the prevaporizer have been investigated. Due to inefficient design, prevaporizer may have local zones where the temperature of air increases or decreases very sharply. Droplets going through these abnormal temperature zones would vaporize at a different rate than others. Current study looks into these droplets to understand the vaporization pattern.
45

Design considerations including six degree-of-freedom modeling of the inductrack maglev carriage

Kluka, Robert J. 01 January 2004 (has links)
No description available.
46

Implementierung der akustischen Levitation in ein Totalanalysesystem

Warschat, Carsten 20 September 2018 (has links)
Als Totalanalysesysteme (TAS) werden Geräte bezeichnet, welche komplette chemische Analysen eigenständig ausführen. Die Einführung solcher Systeme ermöglicht einen effizienteren Arbeitsablauf in Analyselaboren, da beispielsweise die Probenmanipulation, Aufreinigung und die physikalisch-/chemische Analyse automatisiert in einem Arbeitsgang durchgeführt werden können. Die speziellen Mikrototalanalysesysteme benötigen geringere Probemengen im $\mu$L- Bereich. Durch Kontamination, Agglomeration oder einem Verschluss etwaiger Kanäle in mikrofluidischen Totalanalysesystemen kann es zu einem kompletten Systemausfall kommen. Eine Alternative bildet die akustische Levitation, um derartige Störfälle durch gänzlichen Verzicht auf Gefäße und Wandkontakte gezielt zu reduzieren. Damit die akustische Levitation erfolgreich in Mikrototalanalysesystemen Anwendung finden kann, bedarf es der technischen Weiterentwicklung von Analysemethoden und Kopplungstechniken. In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Kopplung von Levitationstechnik und Massenspektrometrie gelegt. Darüber hinaus wurden spektroskopische Experimente durchgeführt, welche auf Totalreflektionen innerhalb der Tropfen beruhen. Die besonders gute Reflektion hängt damit zusammen, dass sich die Phasengrenze zwischen Luft und Flüssigkeit im Schwebezustand durch molekulare Wechselwirkungen ständig erneuert und keine produktionsbedingte raue Oberfläche aufweist. Die Kombination aus automatischer Tropfengenerierung, Spektroskopie sowie der entwickelten Methode zur Ionenerzeugung aus dem Probevolumen und der massenspektrometrischen Analyse bilden die Grundlage eines neuartigen Mikrototalanalysesystems für geringe Probemengen. / As a total analysis system (TAS) an instrument is called which carries out complete chemical analysis procedures independently. The introduction of such systems offers a more efficient workflow in analytical laboratories because the sample manipulation, purification and the actual automated analysis can be carried out in one single operation. Specialized and already existing micro total analysis systems require currently a small amount of sample in the $\mu$L range. Owing to contamination, agglomeration and thus cross-secion reduction of incorporated channels in micro fluidics total analysis systems it can lead to a complete system interruption. Hence, the implementation of acoustic levitation in these systems is interessting alternative in order to avoid such kind of problems by abandoning vessels and wall contacts completely. To ensure acoustic levitation in micro total analysis systems can be successfully applied, technical development of analytical methods and coupling techniques is required. In the present work, the coupling of levitation technology and mass spectrometry is the prioritized topic but, in addition, spectroscopic experiments based on total reflections within the levitated droplet are as well realized in order to gain process insights. The particularly good reflection at the freely levitated droplet's circumference is due to the fact that the phase boundary between air and liquid is renewed by molecular interactions constantly and has no production-related rough surface. The combination of automated droplet generation, spectroscopy as well as the developed method for ion generation from the sample volume and mass spectrometry forms the basis of a novel micro total analysis system for small sample quantities.
47

Controlled electrodynamic suspension vehicle damping

Knierim, Glenn Auld, 1970- 12 August 2011 (has links)
Not available / text
48

Probing levitated droplets with mass spectrometry

Stindt, Arne 30 May 2016 (has links)
Ultraschalllevitation kombiniert die Vorteile von Mikrofluidik, wie beispielsweise die sehr geringe benötigte Probenmenge, mit einer wandlosen Probenhandhabung. Obwohl die Kopplung zwischen le- vitierten Tröpchen und verschiedenster analytischer Methoden wie optischer Spektroskopie und Röntgenbeugung sehr genau untersucht ist, fehlt es immer noch an einer etablierten Kopplung mit einer massenspektrometrischen Methode für die Analyse auf molekularer Ebene. Die vorliegende Arbeit beschreibt die Prinzipien, auf denen eine kontaktlose massenspektrometrische Analyse von levitierten flüssi- gen Proben beruht. Zuerst wurde der neu entworfene akustische Levitator bezüglich des Einflusses seiner Geometrie auf die Levi- tationseigenschaften experimentell und mittels numerischer Simul- tationen untersucht. Die anschließend durch geführten Experimen- te demonstrieren das Potential von Infrarot-Lasern als kombinierte Desorptions- und Ionisationsquelle für organische Substanzen aus einer Mischung aus Wasser und Glycerin als Cromophor. Um einen tieferen Einblick in die hierbei ablaufenden Ionisationsmechanismen zu erhalten, wurde als Modell ein “Sonic-Spray” Konus räumlich per Massenspektrometrie und Laser-induzierter Fluoreszenz untersucht. Levitator-Geometrie auf die Levitationseigenschaften stimmen sehr gut mit numerischen Simulationen überein. Als komplementäre Ionisationsmethode wurde eine Niedertemperatur-Plasmaquelle ein- gesetzt. Nach einer zeitaufgelösten Untersuchung der grundlegenden Ionisationsmechanismen wurde diese Quelle für die Untersuchung flüchtiger Spezies aus der levitierten Probe in deren direkten Umgebung ohne störende Interferenzen ge- nutzt. / Ultrasonic levitation combines advantages of microfluidics like the required small sample volumes with a wall-less sample handling. While the coupling of analytical methods like optical spectroscopy as well as x-ray scattering are very well elaborated, an established mass spectrometric method to obtain molecular analytical information is still lacking. The herein presented work describes the fundamental processes for a contactless mass spectrometric analysis of levitated droplets. First, the influences of the specially designed levitator geometry on the levitation capabilities is described. During further experiments, the use of infrared lasers has proven useful as a combined desorption and ionization source for organic molecules from a mixture of water and glycerol as chromophore. Subsequently, sonic-spray ionization was used to gain a deeper understanding of the ionization processes occurring within the spray plume. Mass spectrometric mapping as well as laser-induced fluorescence were performed to investigate the ionization during an aerodynamic breakup of the micro droplets in the spray process. As a complementary sampling method, the ionization with a low- temperature plasma source is described. First, a time-resolved mass spectrometric investigation of the ionization process is shown. Sub- sequent to this fundamental study, the application of such a plasma source for the direct analysis of volatile compounds from within the droplets in the surrounding environment without interferences from the droplets bulk phase is described.
49

Influence of Oxygen Partial Pressure on the Droplet Shape of Stainless Steel Using Levitated Droplet Method

Hessling, Oscar January 2016 (has links)
An induction setup for levitation studies of molten metals was built. The setup was used to levitate and heat stainless steel samples of 2.00 g to 1600 °C and subject them to different atmospheres. Changes in shape and temperature were recorded by video and infrared thermocouple. Oxide films forming on the droplets during levitation were observed. It was possible to notice an immediate surface reaction when the reaction gas was introduced. This reaction is concluded to influence the surface and bulk composition, and therefore have an effect on the shape evolution of the droplet. A more oxidizing atmosphere resulted in a more conical droplet shape; this is thought to be an effect of lowered surface tension and the conically shaped volumetric force caused by the magnetic field. Changes in temperature after the sample is molten are thought to be an effect of changes in emissivity, caused by surface oxidization. Post mortem analysis show a difference in surface morphology for samples subjected to different gases, as well as a difference in amount of oxidization.
50

A strategic vision of AVCS maglev and its socioeconomic implications

Lee, Sang Hyup 05 October 2007 (has links)
The purpose of this research is to develop a conception of a transportation system called AVCS maglev which is the synergistic combination of two promising concepts, AVCS and Maglev, and to assess its potential as a transportation strategy to cope with the forthcoming challenge of the mobility, safety, environmental protection, and economic growth of the United States. The emphases are put on investigating suitable technological aspects, selecting suitable operational control concepts, assessing economic viability, and determining socioeconomic impacts of the system. Also, the National Development Model (NDM) is developed and analyzed to obtain a deeper understanding of the rational policy formation about the U.S. SOCioeconomic development of the next century, based on the premise that development means improving both quantity of life and quality of life. NDM is organized into six sectors: (1) Industrial Sector, (2) Environmental Sector, (3) Infrastructure Sector, (4) Social Development Sector, (5) Demographic Sector, and (6) Employment Sector. Four policy alternatives are identified, based on the key issues relevant to the future development patterns, and analyzed by computer simulation: (1) Social Development Policy, (2) Industrial Development Policy, (3) Infrastructure Development Policy, and (4) Environmental Protection Policy. / Ph. D.

Page generated in 0.1062 seconds