Spelling suggestions: "subject:"lifetime""
1 |
Lifetimes of states in 19Ne above the 15O+ alpha thresholdSubramanian, Mythili Myths 11 1900 (has links)
Astrophysical models that address stellar energy generation and nucleosynthesis require a considerable amount of input from nuclear physics and are very sensitive to the detailed structure of nuclei, both stable and unstable. Radioactive nuclei play a dominant role in several stellar environments such as supernovae, X-ray bursts, novae etc. and nuclear data are important in the interpretation of these phenomena.
When carbon, nitrogen and oxygen isotopes are present in substantial quantities in a star of sufficient mass, the fusion of four hydrogen nuclei to form a helium nucleus proceeds via the CNO cycles. Energy release in the CNO cycles is limited by the long lifetimes of 14O and 15O. In explosive stellar scenarios such as X-ray bursts, the energy output is very large, suggesting a breakout from the CNO cycles. 15O(α,γ)19Ne is the first reaction that breaks out of the CNO cycle. Nuclear structure information on high lying states in 19Ne is required to calculate the rate of the 15O(α,γ)19Ne reaction. This work focuses on the study of states in 19Ne above 3.53 MeV.
The lifetimes of five states in 19Ne above 3.53 MeV were measured in this work. The states in 19Ne were populated via the 3He(20Ne,α)19Ne reaction at a beam energy of 34 MeV. The lifetimes were measured using the Doppler Shift Attenuation Method. The lifetimes of five states were measured and an upper limit was set on the lifetime of a sixth state. Three of the measurements are the most precise thus far. The lifetimes of the other three states agree with the values of the only other measurement of the lifetimes of these states. An upper limit on the rate of the 15O(α,γ)19Ne reaction was calculated at the 90% confidence level using the measured lifetimes. The contributions to the 15O(α,γ)19Ne reaction rate from several states in 19Ne at different stellar temperatures are discussed.
|
2 |
RESPONSE ADAPTIVE CLINICAL TRIALS WITH CENSORED LIFETIMES2013 October 1900 (has links)
We have constructed a response adaptive clinical trial to treat patients sequentially in order to maximize the total survival time of all patients. Typically the response adaptive design is based on the urn models or on sequential estimation procedures, but we used a bandit process in this dissertation. The objective of a bandit process is to optimize a measure of sequential selections from several treatments. Each treatment consist of a sequence of conditionally independent and identically distributed random variables, and some of these treatment have unknown distribution functions. For the purpose of this clinical trial, we are focusing on the bandit process with delayed response. These responses are lifetime variables which may be censored upon their observations. Following the Bayesian approach and dynamic programming technique, we formulated a controlled stochastic dynamic model. In addition, we used an example to illustrate the possible application of the main results as well as "R" to implement a model simulation.
|
3 |
Measurement of the effective lifetime of the B0 s meson using the flavour specific decay Bs → D-s π + at the LHCb experimentFardell, Gemma Claire January 2013 (has links)
This thesis presents a measurement of the effective B0s decay width, ΓFS, from a single exponential fit to the flavour-specific decay channel B0s → D-s π +. This measurement is based on an integrated luminosity of 340 pb-1 recorded by LHCb in 2011 at a center of mass energy of 7TeV. The dataset is divided into two exclusive selections. B0s → D-s (( ϕ →K-K+) π-)π + only has a significant background contribution arising from combinatorial background, and the modelling of this is determined entirely by the data. B0s → D-s ((K-K* (892)0 → K+ π-))π + has a larger contribution from combinatoric and mis-identified background and provides an alternative measurement. A simultaneous fit for the effective B0s decay width is performed to both the datasets leading to the result: ΓFS = 0:668 ± 0:017 ± 0:031 ps-1 The result is then combined with information from the LHCb B0s → J/ψØ analysis leading to an improved measurement of the average B0 s decay width: Γs = 0:666 ± 0:010 ± 0:031 ps-1
|
4 |
Lifetimes of states in 19Ne above the 15O+ alpha thresholdSubramanian, Mythili Myths 11 1900 (has links)
Astrophysical models that address stellar energy generation and nucleosynthesis require a considerable amount of input from nuclear physics and are very sensitive to the detailed structure of nuclei, both stable and unstable. Radioactive nuclei play a dominant role in several stellar environments such as supernovae, X-ray bursts, novae etc. and nuclear data are important in the interpretation of these phenomena.
When carbon, nitrogen and oxygen isotopes are present in substantial quantities in a star of sufficient mass, the fusion of four hydrogen nuclei to form a helium nucleus proceeds via the CNO cycles. Energy release in the CNO cycles is limited by the long lifetimes of 14O and 15O. In explosive stellar scenarios such as X-ray bursts, the energy output is very large, suggesting a breakout from the CNO cycles. 15O(α,γ)19Ne is the first reaction that breaks out of the CNO cycle. Nuclear structure information on high lying states in 19Ne is required to calculate the rate of the 15O(α,γ)19Ne reaction. This work focuses on the study of states in 19Ne above 3.53 MeV.
The lifetimes of five states in 19Ne above 3.53 MeV were measured in this work. The states in 19Ne were populated via the 3He(20Ne,α)19Ne reaction at a beam energy of 34 MeV. The lifetimes were measured using the Doppler Shift Attenuation Method. The lifetimes of five states were measured and an upper limit was set on the lifetime of a sixth state. Three of the measurements are the most precise thus far. The lifetimes of the other three states agree with the values of the only other measurement of the lifetimes of these states. An upper limit on the rate of the 15O(α,γ)19Ne reaction was calculated at the 90% confidence level using the measured lifetimes. The contributions to the 15O(α,γ)19Ne reaction rate from several states in 19Ne at different stellar temperatures are discussed.
|
5 |
Configuration–Interaction Wave Functions and Transition Probabilities for N IISamnodi, Khulud 15 December 2017 (has links)
The energy levels, lifetimes, oscillator strengths, and transition probabilities of N II lines have been reported in this thesis. We have used the Hartree-Fock (HF) and Multiconfiguration Hartree-Fock (MCHF) methods in our calculations. The relativistic operators mass correction, one-body Darwin term, spin-orbit interaction, and spin-other-orbit have been included in the Breit-Pauli Hamiltonian in our calculations of atomic parameters of singly-ionized nitrogen. We considered 70 levels of the 2s2 2p2, 2s2 2p3, 2s2 2p 3p, 2s2 2p 3s, 2s2 2p 4p, 2s2 2p 3d, 2s2 2p 4s, and 2s2 2p 4d configurations of N II. Our results have been compared with other available calculations and measurements, and generally a good agreement is found.
|
6 |
Lifetimes of states in 19Ne above the 15O+ alpha thresholdSubramanian, Mythili Myths 11 1900 (has links)
Astrophysical models that address stellar energy generation and nucleosynthesis require a considerable amount of input from nuclear physics and are very sensitive to the detailed structure of nuclei, both stable and unstable. Radioactive nuclei play a dominant role in several stellar environments such as supernovae, X-ray bursts, novae etc. and nuclear data are important in the interpretation of these phenomena.
When carbon, nitrogen and oxygen isotopes are present in substantial quantities in a star of sufficient mass, the fusion of four hydrogen nuclei to form a helium nucleus proceeds via the CNO cycles. Energy release in the CNO cycles is limited by the long lifetimes of 14O and 15O. In explosive stellar scenarios such as X-ray bursts, the energy output is very large, suggesting a breakout from the CNO cycles. 15O(α,γ)19Ne is the first reaction that breaks out of the CNO cycle. Nuclear structure information on high lying states in 19Ne is required to calculate the rate of the 15O(α,γ)19Ne reaction. This work focuses on the study of states in 19Ne above 3.53 MeV.
The lifetimes of five states in 19Ne above 3.53 MeV were measured in this work. The states in 19Ne were populated via the 3He(20Ne,α)19Ne reaction at a beam energy of 34 MeV. The lifetimes were measured using the Doppler Shift Attenuation Method. The lifetimes of five states were measured and an upper limit was set on the lifetime of a sixth state. Three of the measurements are the most precise thus far. The lifetimes of the other three states agree with the values of the only other measurement of the lifetimes of these states. An upper limit on the rate of the 15O(α,γ)19Ne reaction was calculated at the 90% confidence level using the measured lifetimes. The contributions to the 15O(α,γ)19Ne reaction rate from several states in 19Ne at different stellar temperatures are discussed. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
7 |
The Mechanism of Formation and Lifetimes of Halogenated KetenesScherubel, Gary 08 1900 (has links)
The investigation presented here is in two parts: a mechanistic study of the triethylamine dehydrohalogenation of ac-haloacid halides to form halogenated ketenes and a study of steric influence upon ketene lifetimes. The first part of this research deals with the mechanism of the dehydrohalogenation reaction. Two acid halides, isobutyryl chloride and a-chloropropionyl chloride, appeared to represent two mechanistic extremes for this reaction with triethylamine. Isobutyryl chloride reacted with triethylamine to form an acylammonium salt while a-chloropropionyl chloride produced the enolate salt. These salts were detected in chloroform solution by both nuclear magnetic resonance spectra and infrared spectra. The results of the investigation into the mechanism of dehydrohalogenation and ketene lifetime were complemented by CNDO/2 calculations of the acid halides and ketenes studied. It was concluded that the mechanism of dehydrohalogenation of acid halides involves a complex series of equilibria,and it has become increasingly apparent that halogenated ketenes are produced through the acylammonium salt. The enolate salt appears to be a dead end in the reaction to form ketenes. It was also demonstrated that increasing steric bulk has a stabilizing effect on ketene lifetimes.
|
8 |
Component availability for an age replacement preventive maintenance policyMurdock, William P. 06 June 2008 (has links)
This research develops the availability function for a continuously demanded component which is maintained by an age replacement preventive maintenance policy. The availability function, A(t), is a function of time and is defined as the probability that the component functions at time t. The component is considered to have two states: operating and failed. In this policy, the component is repaired or replaced at time of failure. Otherwise, if the component survives T time units, a preventive maintenance service is performed. T is known as the age replacement period or preventive maintenance policy. The component is considered to be as good as new after either service action is completed.
A renewal theory approach is used to develop A(t). Past research has concerned infinite time horizons letting analysis proceed with limiting values. This research considers component economic life that is finite. The lifetime, failure service time and preventive maintenance service time probability distributions are unique and independent. Laplace transforms are used to simplify model development. The age replacement period, T, is treated as a parameter during model development. The partial Laplace transform is developed to deal with truncated random time periods. A general model is developed in which the resulting availability function is dependent on both continuous time and T. An exact expression for the Laplace transform of A(t, T) is developed.
Two specific cases are considered. In the first case, the lifetime, repair and preventive maintenance times are unique exponential distributions. This case is used to validate model performance. Tests are performed for t→0, t→∞ and for times in between these extremes. Results validate model performance. The second case models the lifetime as a Weibull distribution with exponential failure repair and preventive maintenance times. Results validate model performance in this case also. Exact infinite series for the partial and normal Laplace transform of the Weibull distribution and survivor function are presented.
Research results show that the optimum infinite time horizon age replacement period does not maximize average availability for all finite values of component economic life. This result is critical in lifecycle maintenance planning. / Ph. D.
|
9 |
Analysis of Polarizability Measurements Made with Atom InterferometryGregoire, Maxwell, Brooks, Nathan, Trubko, Raisa, Cronin, Alexander 06 July 2016 (has links)
We present revised measurements of the static electric dipole polarizabilities of K, Rb, and Cs based on atom interferometer experiments presented in [Phys. Rev. A 2015, 92, 052513] but now re-analyzed with new calibrations for the magnitude and geometry of the applied electric field gradient. The resulting polarizability values did not change, but the uncertainties were significantly reduced. Then, we interpret several measurements of alkali metal atomic polarizabilities in terms of atomic oscillator strengths f(ik), Einstein coefficients A(ik), state lifetimes tau(k), transition dipole matrix elements D-ik, line strengths S-ik, and van der Waals C-6 coefficients. Finally, we combine atom interferometer measurements of polarizabilities with independent measurements of lifetimes and C-6 values in order to quantify the residual contribution to polarizability due to all atomic transitions other than the principal ns-np(J) transitions for alkali metal atoms.
|
10 |
Star formation in the Gould Belt : a submillimetre perspectiveMowat, Christopher January 2018 (has links)
This thesis presents my work characterising star formation in Gould Belt molecular clouds using submillimetre observations from SCUBA-2 on the James Clerk Maxwell Telescope (JCMT). I use these observations alongside data from previously published surveys using instruments including the Spitzer Space Telescope. I investigate the effect of including submillimetre data on the numbers, classifications and lifetimes of Young Stellar Objects (YSOs) in Gould Belt molecular clouds, particularly protostars. Following a literature review, I use SCUBA-2 450 and 850 μm observations to characterise star formation in the Lupus I molecular cloud. A total of eleven previously identified YSOs are detected with SCUBA-2, as well as eleven starless cores. Two cores have masses greater than the Jeans mass, and one has a virial parameter of 1.1 0.4, meaning these cores could be unstable against collapse. I use submillimetre emission to calculate disk masses, and find that one YSO has a disk mass greater than the minimum mass solar nebula. I find that Lupus I has a high percentage of both protostars and Very Low Luminosity Objects (VeLLOs). I also fit YSO Spectral Energy Distributions (SEDs) with models, allowing protostellar envelope masses and temperatures to be calculated, and interstellar extinction to be constrained for some YSOs. The signs of recent and future star formation support the hypothesis that a shock has triggered a star forming event in Lupus I. I also use SCUBA-2 data in conjunction with archival Spitzer and Herschel data to produce SEDs for five new candidate First Hydrostatic Cores (FHSCs) in Serpens South. These observations were then fit with models by the first author of this work, Alison Young. This work was able to identify two of the FHSC candidates as probable FHSCs, and constrain the rotation rate and inclination of one of them. I use JCMT Gould Belt Survey (GBS) observations of ten molecular clouds to produce an updated catalogue of protostars in these clouds. I use the FellWalker algorithm to find individual sources in the SCUBA-2 maps, and match them to the Spitzer YSO catalogue of Dunham et al. (2015). I use bolometric temperature to classify 362 out of 592 candidates as Class 0 or Class I protostars - a factor of two increase compared to the Spitzer catalogue due to improved submillimetre coverage. I find that protostellar lifetimes of 0.59 – 0.89 Myr - approximately 25 % longer than previously estimated. I also calculate protostellar luminosities, envelope masses, and envelope temperatures, and examine the distributions. Finally, I newly identify 19 protostars as VeLLOs, and increase the number of known VeLLOs in these clouds by a factor of two.
|
Page generated in 0.048 seconds