1 |
Analysis of the External Quantum Efficiency of Quantum Dot-enhanced Multijunction Solar CellsThériault, Olivier January 2015 (has links)
This thesis focuses on the analysis of the external quantum efficiency of quantum dot-enhanced multi-junction solar cells. Divided in four major parts, it uses the experimental methodology developed in the SUNLAB. At first, a model is introduced to calculate the external quantum efficiency of single and multi-junction solar cells. This model takes into account the semiconductor physics governing the electrical property of the solar cell. It furthermore takes into account the optical transmission and reflection in the semiconductor structure using a transfer matrix method. The calculated curve fits a single junction GaAs solar cell's external quantum efficiency to a high degree of precision. Finally, an InGaP/GaAs/Ge solar cell's external quantum efficiency is calculated and it reproduces accurately the behavior of a measured cell.
Second, the reflectivity of a solar cell is studied. An analysis technique involving using the fast Fourier transform of the oscillation in the reflectivity is introduced. This technique extracts the thicknesses of the top and middle subcells. The reflectivity is subsequently calculated using the transfer matrix method and it reproduces the behavior of the measured samples.
Third, the effect of the addition of quantum dots in the middle subcell is studied. It is demonstrated that they extend the absorption range of the middle subcell. This is completed by first modeling the quantum mechanical behavior of the electrons and holes in the nanostructure. Their emission and absorption properties are derived. Those derived properties are verified by experimentally measured photoluminescence and electroluminescence of the nanostructures. The resulting model is then compared to experimentally measured external quantum efficiencies of single junction and multi-junction quantum dot-enhanced solar cells.
Finally, a study of the bottom subcell artifact is completed. Using the fill-factor bias experiment, each of the contribution of the light coupling and the internal voltage biasing is decoupled. For the measured sample, an optimal voltage of 2.1 V is found to minimize the artifact. At this point, the internal voltage biasing creates an artifact of 1 % and the light coupling artifact is 8 %.
|
2 |
Extraction de la lumière par des nanoparticules métalliques enterrées dans des films minces / Light extraction in dielectric thin-films using embedded metallic nanoparticlesJouanin, Anthony 24 July 2014 (has links)
L’essor des procédés de micro et nano-fabrications rend aujourd’hui accessible la synthèse contrôlée de nanoparticules métalliques (typiquement de 3 à 200nm) offrant de larges résonances d’absorption et de diffusion dont les fréquences peuvent être contrôlées finement en variant judicieusement leur géométrie et leur composition. Dans ce travail de thèse relevant de l’électrodynamique classique établit par Maxwell, nous étudions numériquement l’intérêt de ces particules pour la problématique du (dé)couplage de la lumière piégée dans un film mince diélectrique - une géométrie de référence permettant de rendre compte du phénomène de piégeage qui limite considérablement l’efficacité de dispositifs électroluminescents et de certaines cellules solaires. Pour ce faire, nous proposons quelques règles de conception de nanoparticules capables d’extraire efficacement la lumière piégée. Pour un émetteur seul, environ 20% de la lumière émise est rayonnée hors du guide (rad~0.2). L’ajout d’une monocouche (~50nm d’épaisseur) composée d’un ensemble de particules « optimisées » et aléatoirement positionnées autour de l’émetteur permet d’accroître cette efficacité jusqu’à 70% en moyenne statistique sur le désordre. D’intéressants effets de cohérences liés à la nature du désordre au sein de ladite couche sont également mis en évidence. / Metallic nanoparticles (MNps) exhibit strong plasmonic resonances in their absorption and scattering spectra. Recent advances in micro- and nano-fabrication processes allow scientists to control the particle shape; and thus to tune these resonances on the visible and near-IR spectrum - opening unprecedented applications ranging from imaging techniques to solar cells improvement. In the present work, we numerically investigate the capacity of MNps to (de)couple the light that is confined in guided modes of dielectric thin films—a relevant system to analyze, understand and reduce the light trapping phenomenon that strongly lowers the efficiency of some electroluminescent devices. To this end, we propose, by the control of its polarization state, to optimize the quantity of light that a nanoparticle extracts during a scattering event. For a sole source embedded in the guide, barely 20% of the light is extracted (rad~0.2). The addition of an ultra-thin layer composed of hundreds of randomly deposited engineered-nanoparticles shows promising results with rad ~0.7 (in realistic configurations). Interesting coherence effects arising from the randomness of the disorder are also evidenced.
|
3 |
Light Management in Photovoltaic Devices and Nanostructure Engineering in Nitride-based Optoelectronic DevicesHan, Lu 02 June 2017 (has links)
No description available.
|
Page generated in 0.0872 seconds