1 |
Higgs boson phenomenology beyond the Standard Model / Phénoménologie des bosons de Higgs au-delà du Modèle StandardLe Corre, Solène 13 March 2018 (has links)
Suite à la découverte du boson de Higgs en Juin 2012 au Large Hadron Collider, l’accélérateur de particules situé à la frontière franco-suisse, l’étude du secteur scalaire des particules élémentaires a connu un regain d’intérêt. En particulier, le boson de Higgs étant une particule clef au sein du Modèle Standard des particules, les expérimentateurs étudient ses propriétés avec beaucoup de soin.Le Modèle Standard, dont le but est de décrire les interactions entre particules élémentaires, n’est cependant pas une théorie complète. En effet, en plus de quelques problèmes d’ordre théorique, certains phénomènes observés expérimentalement ne peuvent pas être expliqués par ce modèle. Les théoriciens en physique des particules cherchent donc à établir une nouvelle théorie venant le compléter et permettant d’expliquer pleinement les observations expérimentales.Cette thèse est axée sur l’étude du secteur scalaire de modèles au-delà du Modèle Standard des particules. J’ai plus particulièrement travaillé sur un modèle à deux doublets de Higgs – modèle purement effectif mais qui peut être inclus dans d’autres théories plus abouties – ainsi que sur un modèle construit comme une combinaison entre les théories déjà très proches de techicouleur et de Higgs composites, et ce dans le cas particulier d’une brisure de symétrie SU (4) ? Sp(4). J’ai étudié ce dernier modèle d’un point de vue effectif mais la théorie complète est capable depallier un certain nombre des limitations du Modèle Standard.Chacun de ces modèles inclut un secteur scalaire plus riche que celui du Modèle Standard et contient au moins une particule pouvant être assimilée au boson de Higgs découvert au LHC. J’ai réalisé l’étude phénoménologique de chacun de ces modèles et les ai confrontés à des contraintes tant théoriques qu’expérimentales – en particulier celles obtenues grâce aux études les plus récentes, portant sur le boson de Higgs et sur de potentielles particules scalaires additionnelles, réalisées par les équipes du LHC. Cela m’a permis de contraindre les paramètres libres des modèles et en particulier de restreindre les valeurs possibles pour la masse des autres particules scalaires, permettant de mieux cibler les zones où ces nouvelles particules, si elles existent, pourraient être détectées au LHC.Ces deux théories, bien que très contraintes par les données expérimentales, ne sont toujours pas exclues par les contraintes expérimentales les plus récentes / Following the discovery of the Higgs boson in June 2012 at the Large Hadron Collider, the particle collider located beneath the France-Switzerland border, interest in the study of the scalar sector in elementary particle physics significantly increased. In particular, as the Higgs boson plays a very special role in the Standard Model of particle physics, experimentalists study its properties with great care.The goal of the Standard Model is to describe the interactions between elementary particles. However the theory is not quite complete. Indeed, in addition to some purely theoretical problems, a number of experimental observations cannot be explained by the Standard Model. Theorists are therefore looking for a more comprehensive theory able to fully explain the observations.This thesis is based on the study of the scalar sector of two different extensions of the Standard Model of particle physics. I have worked on the Two-Higgs Doublet Model – this model is purely effective but can be included in more comprehensive theories – as well as on a model based on a combination of Technicolor and Composite Higgs theories in the framework of the SU (4) ? Sp(4) symmetry breaking pattern. I studied the latter via an effective approach but the full theory is able to get rid of some of the pitfalls of the Standard Model.These two models include a scalar sector that is richer than the one found in the Standard Model and contain at least one particle which can be assimilated to the Higgs boson discovered at the LHC.I performed a phenomenological study for these two models and tested them against both theoretical and experimental constraints. In particular I used the latest studies on the 125 GeV Higgs boson and on possible additional scalars performed by the ATLAS and CMS collaborations. The application of all these constraints drastically reduced the available parameter space of the two models. In particular it narrowed the possible mass range of the additional scalars, allowing to know more accurately where to search them experimentally in order to prove or rule out their possible existence.As of today the two theories I worked on are still not excluded by the latest experimentaldata
|
2 |
Flavor and Dark Matter Issues in Supersymmetric ModelsChowdhury, Debtosh January 2013 (has links) (PDF)
The Standard Model of particle physics attempts to unify the fundamental forces in the Universe (except gravity). Over the years it has been tested in numerous experiments. While these experimental results strengthen our understanding of the SM, they also point out directions for physics beyond the SM. In this thesis we assume supersymmetry (SUSY) to be the new physics beyond the SM. We have tried to analyze the present status of low energy SUSY after the recent results from direct (collider) and indirect (flavor, dark matter) searches .We have tried to see the complementarity between these apparently different experimental results and search strategies from the context of low energy SUSY. We show that such complementarity does exist in well-defined models of SUSY breaking like mSUGRA, NUHM etc. The first chapter outlines the present status of the SM and discusses about the unanswered questions in SM. Keeping SUSY as the new physics beyond the SM, we also detail about its present experimental status. Chapter1 ends with the motivation and comprehensive description about each chapter of the thesis. In chapter2, we present an introduction to formal structure of SUSY algebra and the structure of MSSM.
One of the such complementarities we have studied is between flavor and dark matter. In general flavor violation effects are not considered when studying DM regions in minimal SUSY models like mSUGRA. If however flavor violation does get generated through non-minimal SUSY breaking sector, one of the most susceptible regions would be the co-annihilation region for neutralino DM. In chapter 3 we consider flavor violation in the sleptonic sector and study its implications on the stau co-annihilation region. In this work we have taken flavor violation between the right-handed smuon (˜µR) and stau (˜τR). Due to this flavor mixing the lightest slepton (ĺ1) is a flavor mixed state. We have studied the effect of such ĺ11’s in the ‘stau co-annihilation’ region of the parameter space, where the relic density of the neutralinos gets depleted due to efficient co-annihilation with the staus. Limits on the flavor violating insertion in the right-handed sleptonic sector mainly comes from BR(τ → µγ). These limits are weak in some regions of the Parameter space where cancellations happen with in the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations with in the amplitudes occur. We have shown that in models with non-universal Higgs boundary conditions (NUHM) overlap between these two regions is possible. The effect of flavor violation is two fold: (a) It shifts the co-annihilation regions towards lighter neutralino masses and (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparison among the different flavor conserving and flavor violating channels, which contribute to the neutralino annihilation cross-section, is presented.
One of the challenges of addressing quantitatively the complementarity problems is the lack of proper spectrum generator (numerical tools which computes SUSY sparticle spectrum in the presence of flavor violation in the sfermionic sector). For the lack of a publicly available code which considers general flavor violating terms in the renormalization group equations (RGE) we have developed a SUSY spectrum calculator, named as SuSeFLAV .It is a code written in FORTRAN language and calculates SUSY particle spectrum (with in the context of gravity mediation) in type I seesaw, in the presence of heavy right handed neutrinos (RHN). SuSeFLAV also calculates the SUSY spectrum in other type of SUSY breaking mechanisms (e.g. gauge mediation). The renormalization group (RG) flow of soft-SUSY breaking terms will generate large off-diagonal terms in the slepton sector in the presence of this RHNs, which will give rise to sizable amount of flavor violating (LFV) decays at the weak scale. Hence, in this code we also calculate the different rare LFV decays like, µ → eγ, τ → µγ etc. In SuSeFLAV the user has the freedom to choose the scale of the RHNs as well as the mixing matrix in neutrino sector. It is also possible to choose the values of the SUSY breaking input parameters at the user defined scale. The details of this package is discussed in chapter 4. Many of the present studies of complementarity between the direct and indirect searches are inadequate to address realistic scenarios, where SUSY breaking could be much more general compared to the minimal models. The work in this thesis is a step to wards this direction. Having said that, in the present thesis we have considered modifications of popular models with either explicit flavor violating terms (in some sectors) or sources of flavor violation through new particles and new couplings motivated by strong phenomenological reasons like neutrino masses. It should be noted however, the numerical tool which has been developed during the thesis can be used to address more complicated problems like with complete flavor violation in models of SUSY breaking.
One of the popular mechanisms of neutrino mass generation is the so called Seesaw Mechanism. Depending on the extra matter sector present in the theory there are three basic types of them. The type I seesaw, which has singlet bright-handed neutrinos, the type II seesaw contains scalar triplets and type III seesaw has additional fermionic triplets. One of the implications of the seesaw mechanism is flavor violation in the sfermionic sector even in the presence of flavor universal SUSY breaking. This leads to a complementarity between flavor experiments and direct SUSY searches at LHC. With the announcement of the results from the reactor neutrino oscillation experiments, the reactor mixing angle (θ13) in the neutrino mixing matrix (PMNS matrix) gets fixed to a rather large non-zero value. In SO (10) GUT theories neutrino Yukawa couplings of type I seesaw gets related to the up-type fermion sector of the SM. In chapter 5 we update the status of SUSY type I seesaw assuming SO (10)- like relations for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations with in the flavor violating terms. We have shown that in NUHM scenario there could be possible cancellations which relaxes the severe constraints imposed by lepton flavor violation compared to mSUGRA.
We further updated the flavor consequences for the type II seesaw in SUSY theories. As mentioned previously in type II seesaw neutrino mass gets generated due to exchange of heavy SU (2) L triplet Higgs field. The ratio of lepton flavor violating branching ratios
(e.g. BR(τ → µγ) /BR (µ → eγ) etc.) are functions of low energy neutrino masses ans mixing angles. In chapter 6 we have analyzed how much these ratios become, after the experimental measurement of θ13, in the whole SUSY parameter space or in other words how much these ratios help to constrain the SUSY parameter space. We compute different factors which can affect this ratios. We have shown that the cMSSM-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 BR(τ → µγ) / BR(µ → eγ) 30 for normal hierarchical neutrino masses. We Show that the current MEG limit puts severe constraints on the light sparticle spectrum in cMSSM-like model for seesaw scale with in1013 - 1015 GeV. These constraints can be relaxed and relatively light sparticle spectrum can be still allowed by MEG result in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the GUT scale.
In chapter 7 we have analyzed the effect of largen eutrino Yukawa couplings on the supersymmetric lightest Higgs mass. In July 2012, ATLAS and CMS collaboration have updated the Higgs search in LHC and found an evidence of a scalar particle having mass around 125 GeV. The one-loop contribution to Higgs mass mainly depends on the top trilinear couplings (At), the SUSY scale and the top Yukawa (Yt). Thus in models with extra large Yukawa couplings at the high scale like the seesaw mechanism ,the renormalization scaling of the At parameter can get significantly affected. This in turn can modify the light Higgs mass at the weak scale for the same set of SUSY parameters. We have shown in type I seesaw with (Yν ~ 3Yu) the light Higgs mass gets reduced by 2 - 3 GeV in most of the parameter rspace. In other words the SUSY scale must be pushed high enough to achieve similar Higgs mass compared to the cMSSM scenario. We have got similar effect in SUSY type III seesaw scenario with (Yν ~Yu) at the GUT scale.
In chapter 8 we summarize the results of the thesis and discuss the possible future directions.
|
Page generated in 0.0445 seconds