1 |
Reaction time to light as conditioned by wave length and intensityHolmes, Joseph Lawrence, January 1923 (has links)
Thèse : Sciences : Columbia : 1923.
|
2 |
Electromagnetic properties of anisotropic plasmonic metamaterials /Elser, Justin Lee. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 74-78). Also available on the World Wide Web.
|
3 |
Subwavelength light confinement and quantum chaos in micro- and nano-structured metamaterials /Govyadinov, Alexander A. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 75-82). Also available on the World Wide Web.
|
4 |
Intensity noise studies of semiconductor light emittersWölfl, Friedrich January 2000 (has links)
No description available.
|
5 |
Sleep, mood, and circadian responses to bright green light during sleepGrandner, Michael Andrew. January 2007 (has links)
Thesis (Ph. D.)--University of California, San Diego and San Diego State University, 2007. / Title from first page of PDF file (viewed June 11, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 108-123).
|
6 |
Electromagnetically induced transparency and light storage in optically dense atomic vapourLangfahl-Klabes, Gunnar January 2015 (has links)
This thesis set out to investigate light storage based on dynamic electromagnetically induced transparency (EIT) in a room-temperature atomic ensemble of rubidium as a means to provide a quantum memory for single-photons created by a single rubidium atom coupled to a high-finesse optical resonator. Setting up the light storage medium presented a new addition to the research group's portfolio of experimental techniques and led to investigations of EIT, slow light and stored light in warm rubidium-87 vapour. Lambda level schemes connecting Zeeman or hyperfine substates on the D<sub>1</sub> and D<sub>2</sub> lines were addressed in rubidium vapour cells containing different buffer gases and different isotopic fractions of rubidium-87 and rubidium-85. Single beam spectroscopy with a weak probe was used to characterise the vapour cells. A numerical method to fit the D line spectrum to a theoretical model to include isotopic fractions and collisional broadening of a buffer gas has been implemented. Temperature and isotopic fractions could be reliably extracted from the fit parameters. For an offset-stabilisation of two lasers to address a lambda level scheme connecting the two different hyperfine groundstates in rubidium a phase locked loop including a frequency divider has been designed and implemented. Light storage and retrieval has been demonstrated using a Zeeman scheme on the D1 line. Two microsecond long classical light pulses containing one million photons on average were stored and retrieved with an efficiency of 15% after a delay of one microsecond. Several methods of attenuating the strong co-propagating control laser beam to allow for lowering the signal pulse intensity in future experiments are discussed.
|
7 |
Top-Emitting OLEDs: Improvement of the Light Extraction Efficiency and Optimization of Microcavity Effects for White EmissionSchwab, Tobias 03 November 2014 (has links)
In the last decades, investigations of organic light-emitting diodes (OLEDs) have tackled several key challenges of this lighting technology and have brought the electron to photon conversion efficiency close to unity. However, currently only 20% to 30% of the photons can typically be extracted from OLED structures, as total internal reflection traps the major amount of the generated light inside the devices.
This work focuses on the optimization of the optical properties of top-emitting OLEDs, in which the emission is directed away from the substrate. In this case, opaque materials, e.g. a metal foil or a display backplane can be used as substrate as well. Even though top-emitting OLEDs are often preferred for applications such as displays, two main challenges remain: the application of light extraction structures and the deposition of highly transparent materials as top electrode, without harming the organic layers below. Both issues are addressed in this work.
First, top-emitting OLEDs are deposited on top of periodically corrugated light outcoupling structures, in order to extract internally trapped light modes by Bragg scattering and to investigate the basic scattering mechanisms in these devices. It is shown for the first time that the electrical performance is maintained in corrugated top-emitting OLEDs deposited on top of light extraction structures. Furthermore, as no adverse effects to the internal quantum efficiency have been observed, the additional emission from previously trapped light modes directly increases the device efficiency. It has been proven that the spectral emission of corrugated OLEDs is determined by the interference of all light modes inside the air light-cone, including the observation of destructive interference and anti-crossing phenomena. The formation of a coherently coupled mode pair of the initial radiative cavity mode and a Bragg scattered mode has been first observed, when grating structures with an aspect ratio > 0.2 are applied. There, the radiative cavity mode partially vanishes. The observation and analysis of such new emission phenomena in corrugated top-emitting OLEDs has been essential in obtaining a detailed insight on fundamental scattering processes as well as for the optimization and control of the spectral emission by light extraction structures.
Second, the adverse impact of using only moderately transparent silver electrodes in white top-emitting OLEDs has been compensated improving the metal film morphology, as the organic materials often prevent a replacement by state-of-the-art electrodes, like Indium-tin-oxide (ITO). A high surface energy Au wetting layer, also in combination with MoO3, deposited underneath the Ag leads to smooth, homogeneous, and closed films. This allows to decrease the silver thickness from the state-of-the-art 15 nm to 3 nm, which has the advantage of increasing the transmittance significantly while maintaining a high conductivity. Thereby, a transmittance comparable to the ITO benchmark has been reached in the wavelength regime of the emitters. White top-emitting OLEDs using the wetting layer electrodes outperform state-of-the art top-emitting devices with neat Ag top electrodes, by improving the angular colorstability, the color rendering, and the device efficiency, further reaching sightly improved characteristics compared to references with ITO bottom electrode. The enormous potential of wetting layer metal electrodes in improving the performance of OLEDs has been further validated in inverted top-emitting devices, which are preferred for display applications, as well as transparent OLEDs, in which the brittle ITO electrode is replaced by a wetting layer electrode.
Combining both concepts, wetting layer electrodes and light extraction structures, allows for the optimization of the grating-OLED system. The impact of destructive mode interference has been reduced and thus the efficiency increased by a decrease of the top electrode thickness, which would have not been achieved without a wetting layer. The optimization of corrugated white top-emitting OLEDs with a top electrode of only 2 nm gold and 7 nm silver on top of a grating with depth of 150 nm and period of 0.8 µm have yielded a reliable device performance and increased efficiency by a factor of 1.85 compared to a planar reference (5.0% to 9.1% EQE at 1000 cd/m2). This enhancement is comparable to common light extraction structures, such as half-sphere lenses or microlens foils, which are typically restricted to bottom-emitting devices. Overall, the deposition of top-emitting OLEDs on top of light extraction structures finally allow for an efficient extraction of internally trapped light modes from these devices, while maintaining a high device yield.
Finally, the investigations have resulted in a significant efficiency improvement of top-emitting OLEDs and the compensation of drawbacks (optimization of the white light emission and the extraction of internal light modes) in comparison to the bottom-emitting devices. The investigated concepts are beneficial for OLEDs in general, since the replacement of the brittle ITO electrodes and the fabrication of roll-to-roll processing compatible light extraction structures are also desirable for bottom-emitting, or transparent OLEDs.
|
8 |
The right light at the right time for bipolar patients. An exploratory study of light environments for patients with bipolar disease in behavioral health clinicsSvanberg, Mira January 2021 (has links)
Research has showed that different light scenarios have a profound effect on hospitalized bipolar patients. Different light situations decrease the hospital stay for patients during both manic and depressive episodes. Nevertheless, a field study carried out during this thesis work of two arbitrary patient rooms in Swedish behavioral health clinics showed no incorporation of this knowledge in the light design of the rooms. Both patient rooms had insufficient light levels both in terms of circadian recommendations and perceived brightness. Hence this thesis suggests an improved light design for patient rooms housing bipolar patients. The basis of the improved design is to incorporate a dynamic, circadian lighting that varies depending on the patient's need and diagnosed episode.
|
9 |
Functional proteomics of protein phosphorylation in algal photosynthetic membranes /Turkina, Maria, January 2008 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 4 uppsatser. Includes bibliographical references.
|
10 |
Functional proteomics of protein phosphorylation in algal photosynthetic membranes /Turkina, Maria, January 2008 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 4 uppsatser.
|
Page generated in 0.0692 seconds