• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 63
  • 52
  • 34
  • 34
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 531
  • 531
  • 136
  • 75
  • 58
  • 53
  • 51
  • 49
  • 45
  • 45
  • 39
  • 36
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

DEVELOPMENT OF PHASE DECORRELATION OPTICAL COHERENCE TOMOGRAPHY FOR ASSESSMENT OF THE OCULAR LENS AND CORNEA

Blackburn, Brecken June 07 September 2021 (has links)
No description available.
282

Investigating Structural Proteins by Light Scattering

Nudurupati, Uma 02 April 2021 (has links) (PDF)
This thesis evaluates the organization of the structural proteins, Human Gamma D crystallin and Collagen type II, into higher-order structures using light scattering. Specifically, it evaluates the natures of incipient aggregation in Human Gamma D crystallin and the nature of its interactions with CAPEGn, an electrostatic blocker. Additionally, this thesis evaluates whether Collagen type II growth kinetics follows Classical nucleation theory.
283

Study of the Morphology and Optical Properties of Propylene/Ethylene Copolymer Films

Fratini, Christopher M. 04 May 2006 (has links)
The development of a new catalyst system by The Dow Chemical Company has resulted in the production of isotactic polypropylene and propylene/ethylene copolymers with a unique defect and comonomer distribution. This work investigated the morphology and optical properties of cast and compression molded films made from the homopolymer and copolymers with up to 20 mol% ethylene comonomer. The defect distribution of the Dow Chemical copolymers resulted in materials with lower crystallinity than Ziegler-Natta or metallocene-made materials of similar ethylene content. These materials exhibited a gamma-phase crystal content ranging from 0-95%, depending on ethylene content, processing condition, and catalyst type. The gamma-phase crystal content of quiescently crystallized copolymer films was found to significantly influence their bulk optical properties, presumably through a change in the spherulite birefringence. The bulk haze, clarity, and transparency of a homopolymer film were degraded through annealing treatments, which decreased the fraction of gamma-phase crystallinity and increased the thickness of existing lamellae, resulting in an increased intensity of scattered light and a corresponding degradation in the optical properties of the film. The haze, clarity, transparency, and gloss of the copolymer films were found to improve at higher comonomer content and higher cooling rates. The variation in the length scale and degree of disorder in the bulk morphology of films processed under different conditions was shown to correlate with the optical quality of the films, with smaller scale morphologies scattering less light and resulting in films with better optical properties. It was also shown that no single metric can completely describe the optical quality of a polymer film; the relative importance of haze, transparency, and gloss, which depends on the intended application of the film, was discussed. The influence of surface scattering from the films was controlled through the compression molding of films using substrates of different surface roughness. The contribution of light scattered from the surface of the films was isolated and found to play a significant role in the degradation of optical quality. / Ph. D.
284

Nonlinear optical studies of dye-doped nematic liquid crystals

Klysubun, Prapong 03 April 2002 (has links)
Nematic liquid crystals possess large optical nonlinearities owing to their large refractive index anisotropy coupled with the collective molecular reorientation. Doping absorbing dyes into liquid crystals increases their optical responses significantly due to increased absorption in the visible region, absorption-induced intermolecular torque, cis-trans photoisomerization, and other guest-host effects. The guest-host mixtures can be employed in display applications, optical storage devices, and others. In this dissertation, nonlinear optical studies were carried out on dye-doped nematic liquid crystal cells. The main objectives of the studies were to distinguish and characterize the several processes that can lead to the formation of dynamic gratings of different types in the samples, and to study the photorefractive and the orientational responses of these samples. Furthermore, we tried to explain and model the dynamical behaviors of the observed grating formations. The experimental techniques employed in this study include asymmetric two-beam coupling, forced light scattering, and polarization holographic method. The asymmetric two-beam coupling experiments revealed that the induced grating was a photorefractive phase grating created by the nematic director reorientation within the plane of incidence. The dynamics of the beam coupling showed that two different mechanisms with different temporal responses were involved. The grating translation technique identified both gratings as pure photorefractive index gratings with phase shifts of ~ p/2 between the grating and the interference pattern. In addition, the dynamical behavior of the grating formation, obtained from forced light scattering experiments, also exhibited a two-time constant response. The dynamical behaviors of the build-up and decay of the photocurrent were investigated. The two dynamics exhibited both a two-time constant behavior, suggesting that the origin of the two-time constant dynamics observed in the two-beam coupling and the forced light scattering experiments resides in the process of photo-charge generation. The photorefractive gain coefficients were found to be in the range of 100 – 400 cm-1. The values of the nonlinear optical Kerr index (~ 0.08 cm2/W) measured in samples with certain dye/liquid crystal combinations are higher than what has been observed in other dye-doped nematics and other liquid crystal/polymer systems. All the samples showed a threshold behavior with respect to the magnitude of the applied electric field. This threshold behavior was observed both in forced light scattering experiments and polarization holographic experiments. We believe that the origin of this threshold lies in the process of photogeneration, which was found to exhibit the same threshold behavior at the same value of the applied voltage. An asymmetry of the photorefractive gain with respect to the direction of the applied electric field was observed in samples with high dye concentration. This was attributed to the beam fanning effect, which has also been observed in other high-gain photorefractive materials. Polarization holographic measurements showed that the dye enhancement effect is primarily due to the intermolecular interaction between the dye molecules and the liquid crystal host, and that the trans-cis photoisomerization plays a lesser role. The photoinduced orientational response was also studied using polarization holographic experiments. A number of observations confirmed that the birefringent grating is due to the nematic director reorientation within the plane of incidence, under the combined effect of the applied electric field and the optical field. The diffraction efficiency was found to depend linearly on the writing beam power, while the dependence of the self-diffraction efficiency on the writing beam power roughly assumes a cubic relationship. The dynamical behavior of the birefringent grating formation was investigated. The build-up dynamics was found to be best modeled as a double-time constant response, while the decay is best fitted by a single exponential. The response of the samples to an oscillating electric field was studied as a function of the modulation frequency. Very interesting and reproducible dynamics was observed, revealing the complex dynamical response of the liquid crystal director to the magnitude and rate of change of an applied electric field. The small signal response was also measured, but did not reveal any sign of a resonance behavior. The conductivity and the photoconductivity of the samples were measured. The relationship between the measured current and the applied voltage was found to be cubic at low applied voltage, and to become linear at higher applied voltage. We could explain this behavior using a double-charge-injection-in-a-weak-electrolyte model, but this is only one of the possible mechanisms that could explain this behavior. The photocurrent was found to increase linearly with the illumination power, which indicates that the charge carrier recombination rate is proportional to the carrier density. The measured electrical conductivity was found to be proportional to the square root of the dye concentration, confirming the validity of the proposed charge-injection model. / Ph. D.
285

Phase Behavior and Phase Separation Kinetics in Polymer Solutions under High Pressure

Zhang, Wei 25 April 2005 (has links)
The phase behavior and phase separation kinetics in polymer solutions in binary mixtures of supercritical carbon dioxide (CO2) and organic solvents were studied for two systems. Solutions of polyethylene (PE) in CO2 + n-pentane were selected as one model system to study both the solid-fluid (S-F) and liquid-liquid (L-L) phase transitions as well as the interplay of these two types of phase separations on the final morphological and thermal properties of PE crystals. Solutions of polysulfone (PSF) in CO2 + tetrahydrofuran (THF) were selected as another model system because of the technological importance of this membrane forming polymer and because of the broad interest in developing new solvent/non-solvent systems for forming microporous materials. These phase boundaries were determined using a high-pressure view-cell and optical techniques over a temperature range of 90-165 oC and pressures up to 55 MPa for PE/n-pentane/CO2 system, and over a temperature range of 25 to 155 oC and pressures up to 70 MPa for PSF/THF/CO2 system. For PE solutions, it has been found that the addition of CO2 to the PE/n-pentane system shifts the L-L phase boundary to significantly higher pressures, but moves the S-F phase boundary only slightly to higher temperatures. The S-F phase boundary which represents the crystallization/melting process in the polymer solution was about 10 oC lower than the crystallization/melting temperatures of the neat polyethylene samples determined by differential scanning calorimetry (DSC). It was further found that the S-F phase boundary in n-pentane displays a unique sensitivity to the pressure-temperature conditions and moves to lower temperatures in the pressure range from 38 to 42 MPa. This effect even though not as augmented remains also for the S-F boundary in the solutions in CO2 + n-pentane mixtures. The miscibility of PSF in THF + CO2 was investigated at CO2 levels up to 14 wt %. This system shows lower critical solution temperature (LCST)-type phase behavior at low CO2 content, which is shifted to upper critical solution temperature (UCST)-type at higher CO2 levels along with an increase in the miscibility pressures. In contrast to the PE system, this system was found to display multiple miscibility windows. A "U"-shaped phase boundary in 92 % THF + 8 % CO2 mixture was observed to transfer to a "W"-shaped phase boundary at 10 wt % CO2, which was further separated into a double "U"-shaped phase boundary at 13 wt % CO2. The specific volume of the polysulfone solutions were found to display a variation parallel to this changing pattern in the phase boundaries, with reduced miscibility being accompanied with an increase in the specific volume. The phase separation kinetics in these two polymer solutions were investigated using time- and angle-resolved light scattering techniques. With the PE solutions, the focus was on the kinetics of S-F phase separation (crystallization) and miscibility and (melting) in n-pentane. Experiments were conducted with relatively dilute solutions at concentrations up to 2.3 wt %. The results show that the crystallization which was induced by cooling at constant pressure is dominated by a nucleation and growth process. In the majority of the experiments the particle growth process was observed to last for about 1 minute with a slight dependence on the crystallization pressure. The phase separation kinetics in PSF solutions were conducted only in a solvent mixture containing 90 wt % THF and 10 wt % CO2. Polymer concentrations were varied up to 3.3 wt %. This system was also observed to undergo phase separation by only nucleation and growth mechanism under these conditions upon reducing the pressure at constant temperature. Several experiments were conducted using a multiple rapid pressure drop technique to identify the depth of the metastable region. PE crystals that were produced by crossing the S-F boundary by different paths were collected and characterized by field emission scanning electron microscopy (FESEM) and DSC. Crystallization was carried out either by cooling at constant pressure, or by cooling without pressure adjustment, or by first crossing the L-L boundary via pressure reduction at a constant temperature followed by cooling. For crystal recovery, the system was depressurized to ambient conditions irrespective of the path. It was found that all of the crystals formed from these solutions show multiple melting peaks in their first DSC heating scans, which however collapse into one crystallization peak in the cooling scans and one melting peak in the second heating scans. The temperatures corresponding to the multiple melting peaks were lower than the single melting temperature of the original PE sample and the melting temperature observed in the second heating scans for all samples. The multiple melting peaks were attributed to the presence of different lamellar thickness that are formed in the crystallization, final depressurization and sample collection stages. Depending upon the crystallization path some differences were noted. The crystals formed by first going through L-L phase separation displayed predominately double melting peaks in the first DSC scan. It was observed that the overall crystallinity is increased by more than 10 % to about 75 % compared to the crystallinity of the original PE sample, which is about 63 %. FESEM characterization showed that the prevailing morphology is composed of plate-like lamellae that show different level of agglomeration depending on the crystallization conditions. The overall structures of the particles were ellipsoid for crystals formed from dilute solutions. For crystals formed from the 1% PE solution, crystal sizes ranged from 4 mm ´ 10 mm for crystals formed at 14 MPa to 30 mm ´ 45 mm at 45 MPa. The crystals formed from 5 wt % solutions in n-pentane at pressures in the range of 38-54 MPa showed different morphologies with features of shish-kebab like structures which were however absent in crystals formed from n-pentane + CO2 solutions. The crystals that were formed from first crossing the L-L phase boundary followed by cooling showed two distinct particle size ranges that were attributed to crystals formed from the polymer-rich and polymer-lean phases that evolve when the L-L phase boundary is crossed. / Ph. D.
286

Diffusion of light by colloidal clay suspensions

Davis, James Edward January 1933 (has links)
The purpose of this work is to find a method of determining the average particle size in samples of clays and ceramical materials, and to attempt to classify their physical properties according to the size of the particles. Such data should be useful to compare the properties of clays, to match different samples for uniformity, and to better control processes where clays are used, as for instance in manufacture of paper, rubber, and burned wear. / M.S.
287

Phase and Rheological Behavior of Langmuir Films at the Air/Water Interface: Polyhederal Oligomeric Silsesquioxanes (POSS), POSS/Polymer Blends, and Magnetic Nanoparticles

Yin, Wen 12 June 2009 (has links)
For over a century, Langmuir films have served as excellent two-dimensional model systems for studying the conformation and ordering of amphiphilic molecules at the air/water (A/W) interface. With the equipment of Wilhelmy plate technique, Brewster angle microscopy (BAM), and surface light scattering (SLS), the interfacial phase and rheological behavior of Langmuir films can be investigated. In this dissertation, these techniques are employed to examine Langmuir films of polyhedral oligomeric silsesquioxane (POSS), polymer blends, and magnetic nanoparticles (MNPs). In a first time, SLS is employed to study POSS molecules. The interfacial rheological properties of trisilanolisobutyl-POSS (TiBuP) indicate that TiBuP forms a viscoelastic Langmuir film that is almost perfectly elastic in the monolayer state with a maximum dynamic dilational elasticity of around 50 mNâ m-1 prior to film collapse. This result suggests that TiBuP can serve as model nanofiller with polymers. As an interesting next step, blends of TiBuP and polydimethylsiloxane (PDMS) with different compositions are examined via surface pressure (surface pressureâ surface area occupied per molecule (A) isotherms and SLS. The results show that TiBuP, with its attendant water, serves as a plasticizer and lowers the dilational modulus of the films at low surface pressure. As surface pressure increases, composition dependent behavior occurs. Around the collapse pressure of PDMS, the TiBuP component is able to form networks at the A/W interface as PDMS collapse into the upper layer. Blends of non-amphiphilic octaisobutyl-POSS (OiBuP) and PDMS are also studied as an interesting comparison to TiBuP/PDMS blends. In these blends, OiBuP serves as a filler and reinforces the blends prior to the collapse of PDMS by forming "bridge" structure on top of PDMS monolayer. However, OiBuP is non-amphiphilic and fails to anchor PDMS chains to the A/W interface. Hence, OiBuP/PDMS blends exhibit negligible dilational viscoelasticity after the collapse of PDMS. Furthermore, the phase behavior of PDMS blended with a trisilanol-POSS derivative containing different substituents, trisilanolcyclopentyl-POSS (TCpP), is also investigated via the Wilhelmy plate technique and BAM. These TCpP/PDMS blends exhibit dramatically different phase behavior and morphological features from previously studied POSS/PDMS blends, showing that the organic substituents on trisilanol-POSS have considerable impact on the phase behavior of POSS/PDMS blends. The interfacial rheological behavior of tricarboxylic acid terminated PDMS (PDMS-Stabilizer) and PDMS stabilized MNPs are investigated and compared with "regular" PDMS containing non-polar end groups. The tricarboxylic acid end group of the PDMS-Stabilizer leads to a different collapse mechanism. The PDMS stabilized MNPs exhibit viscoelastic behavior that is similar to PDMS showing all the tricarboxylic acid end groups are bound to the magnetite cores. Studying the interfacial behavior of different Langmuir films at the A/W interface provides us insight into the impact of molecule-molecule and molecule-subphase interactions on film morphology and rheology. These results are able to serve as important guides for designing surface films with preferred morphological and mechanical properties. / Ph. D.
288

Albumin Adsorption: Inferences of Protein Interactions Measured by Sedimentation both Between Species and Induced by Denaturing

McKeon, Kristin Dianne 20 May 2008 (has links)
Biological development and progression are managed by a diverse macromolecular group called proteins. Protein structure results from a complex folding process that leads to a final active form. This protein state is susceptible to changes in the surrounding environment and an incorrect structure can be produced. Changes in the protein conformation can lead to the formation of protein aggregates. Adsorption of proteins onto surfaces is utilized in many research analyses, but is capable of irreversibly changing the protein structure and causing aggregation. Albumin is a plasma protein that adsorbs on many different surfaces because the structure easily rearranges. The structure of albumin once adsorbed has been shown to deteriorate; however, outcomes of both stabilization and aggregation have been found. A dynamic laser light scattering instrument will be utilized to measure the differences in size and determine the amount of aggregation. Our lab has developed a z-axis translating laser light scattering device (ZATLLS) that has been used to measure the sedimentation velocity of several different materials in solution. In this case, bovine serum albumin (BSA) will be adsorbed onto polystyrene particles and the particle settling velocity determined. The settling solution viscosity and density will also be ascertained, so Stoke's law can infer the average aggregate size of each experiment. BSA-coated polystyrene particles displayed a more controlled settling behavior compared to non-coated polystyrene particles. Although the BSA-coated particles had a smaller sedimentation velocity, a larger aggregate size was found due to the greater solution viscosity. Therefore, the ZATLLS instrument can be employed to measure sedimentation velocities of multiple interactions and the aggregation level inferred. Although most albumin molecules are remarkably similar, there are subtle differences in amino acid residues, length, and charge. Sedimentation velocities for human serum albumin (HSA) coated polystyrene particles and BSA-coated polystyrene particles only had a small difference. However an almost 50% higher solution viscosity was measured in BSA experiment solutions, and resulted in the slower settling of the larger aggregates compared to HSA-coated particles. Viscosity calibration curves for each albumin species were used to determine the amount of protein desorbed from the particles during the settling process. The larger solution viscosity for BSA-coated particle experiments led to a much larger degree of desorption. HSA was shown to be the more stable albumin species when adsorbed onto polystyrene particles. Temperature denaturing was performed to aid in the determination of the stability of BSA. Reversible and irreversible conformational changes in BSA were produced at 46ºC and 76ºC respectively. The solutions were cooled to room temperature before adsorption ontopolystyrene particles and the sedimentation velocities measured. A 50% difference in average viscosity between the reversibly and irreversibly changed BSA was found. This caused the larger aggregates formed in the 76ºC BSA experiments to have an almost equivalent sedimentation velocity to those in the reversibly denatured BSA experiments. Average aggregate size for reversibly denatured BSA was well within the ranges found for non-denatured BSA. In conclusion, irreversibly denatured BSA formed larger aggregates and was more likely to desorb from the polystyrene particles than reversibly changed BSA. / Master of Science
289

Συσχετισμός δυναμικών ιδιοτήτων των οφθαλμικών ιστών και παθήσεων του οφθαλμού. Μη-επεμβατική διάγνωση με την χρήση τεχνικών σκέδασης φωτός laser

Πέττα, Βασιλική 12 November 2007 (has links)
Λόγω της διαφάνειας των οφθαλμικών ιστών η σκέδαση φωτός αποτελεί ιδανικό εργαλείο για την ανίχνευση των αρχικών σταδίων ορισμένων παθολογικών τους καταστάσεων. Για παράδειγμα, η θόλωση του φακού των θηλαστικών λόγω ηλικίας ή/και άλλων εξωγενών αιτίων καλείται καταρράκτης. Ο καταρράκτης δεν μπορεί να διαγνωστεί κλινικά σε πρώιμο στάδιο με αποτέλεσμα την δημιουργία σοβαρών προβλημάτων στην όραση. Το γεγονός ότι το φως έχει την ικανότητα να ανιχνεύει τις μοριακές αλλαγές οι οποίες είναι πρόδρομα συμπτώματα του καταρράκτη αναδεικνύει την σημασία της έγκαιρης διάγνωσης στην αντιμετώπιση διάφορων οφθαλμικών παθήσεων. Ο φακός θεωρείται ως ένα πυκνό διάλυμα πρωτεϊνών (κρυσταλλίνες, ~40 % wt) σε νερό και η αδιαφάνεια η οποία αποτελεί την εκδήλωση του καταρράκτη προκαλείται ουσιαστικά από την συσσωμάτωση των πρωτεϊνών. Στόχος αυτής της διατριβής είναι η διερεύνηση των μοριακών μεταβολών οι οποίες λαμβάνουν χώρα κατά την ανάπτυξη του καταρράκτη. Ιδιαίτερη σημασία δίνεται επίσης στην ανάπτυξη μιας μη-επεμβατικής μεθοδολογίας για έγκαιρη διάγνωση οφθαλμικών παθήσεων με τη βοήθεια της δυναμικής σκέδασης φωτός. Με την βοήθεια της τεχνικής αυτής, κατάλληλα τροποποιημένης για την μελέτη οφθαλμικών ιστών, μελετήθηκαν οι δυναμικές ιδιότητες των πρωτεϊνών χοίρειων φακών (π.χ. οι συντελεστές διάχυσης, η θερμοκρασιακή τους εξάρτηση σε διάφορα μέρη του φακού, κλπ.) χρησιμοποιώντας το πειραματικό μοντέλο του “ψυχρού” καταρράκτη. Στο μοντέλο αυτό η ελεγχόμενη ψύξη φακών επιφέρει βαθμιαία καταρρακτογένεση. Ιδιαίτερη έμφαση δόθηκε σε τέσσερα κυρίως είδη περαμάτων. (α) Μελέτη της εμφάνισης του ψυχρού καταρράκτη στον πυρήνα του φακού. (β) Μελέτη της επίδρασης του μήκους κύματος της ακτινοβολίας στην εμφάνιση και στην έκταση του φαινομένου του ψυχρού καταρράκτη. (γ) Μελέτη του φαινομένου του ψυχρού καταρράκτη κατά μήκος μιας διαμέτρου του φακού, δεδομένης της βαθμίδας συγκέντρωσης των πρωτεϊνών του φακού (μεγάλη συγκέντρωση στον πυρήνα και μικρή συγκέντρωση στην περιφέρεια του φακού). (δ) Μελέτη του επίδρασης της προθέρμανσης του φακού σε θερμοκρασίες υψηλότερες της φυσιολογικής στο φαινόμενο του ψυχρού καταρράκτη. Τα βασικά συμπεράσματα της παρούσας διατριβής συνοψίζονται ως εξής. Υπάρχουν σαφείς συσχετισμοί μεταξύ των φασματικών χαρακτηριστικών (συναρτήσεις αυτοσυσχέτισης) και των ιεραρχικών σταδίων ανάπτυξης του καταρράκτη. Ποιοτικές και ποσοτικές αλλαγές στην θερμοκρασιακή εξάρτηση διαφόρων παραμέτρων, οι οποίες σχετίζονται με τις μοριακές διαμορφώσεις των αρχικών σταδίων του καταρράκτη, εμφανίζονται ήδη από τους 17 oC όπου ο πυρήνας του φακού είναι ακόμα διαυγής. Η χρήση ακτινοβολίας κοντά στο υπεριώδες μέρος τους φάσματος ενισχύει την ανάπτυξη του ψυχρού καταρράκτη στον πυρήνα του φακού. Ο ψυχρός καταρράκτης δεν αναπτύσσεται στην περιφέρεια του φακού. Η προθέρμανση του φακού σε συγκεκριμένη θερμοκρασία καθώς και ο χρόνος παραμονής σε αυτήν επηρεάζει σημαντικά την ανάπτυξη του ψυχρού καταρράκτη στον πυρήνα αλλά όχι στην περιφέρεια του φακού. Όλα τα παραπάνω δείχνουν πως η δυναμική σκέδαση φωτός μπορεί να παρέχει παραμέτρους οι οποίες μπορούν να χρησιμοποιηθούν με επιτυχία ως ευαίσθητοι και αξιόπιστοι δείκτες της έγκαιρης, μη-επεμβατικής, και in vivo διάγνωσης του καταρράκτη. / On account of the transparency of ophthalmic tissues, light scattering is an ideal tool for detecting the early stages of some of their pathological conditions. For example, the opacity of the mammalian lens due to age or other external causes is called cataract. Cataract cannot be detected clinically at early stages and as a result serious vision problems appear. The fact that, light has the ability to detect molecular changes that are related to the mechanism of cataract formation draws attention to the importance of early diagnosis in ophthalmic disorders. The lens can be considered as a dense colloidal protein dispersion (crystallins, ~ 40% wt) in water where the opacity that leads to cataract formation how its basis to the aggregation of proteins. This dissertation is aimed at studying the molecular changes that take place upon cataract development. Particular emphasis is paid to the development of a non-invasive methodology for early diagnosis of ocular diseases with the aid of dynamic light scattering. By means of this technique, suitably modified for the study of ophthalmic tissues, the dynamic properties of the proteins of porcine lenses (e.g. diffusion coefficients and their temperature dependence at various parts inside the lens, etc.) were studied by using the experimental model of ‘cold’ cataract. In cold cataract the controlled cooling of the lens at temperatures below the physiological one induces gradual cataractogenesis. In particular, we focused on four kinds of experiments. (a) Detailed study on the cold cataract onset in the lens nucleus. (b) Study on the effect of the laser light wavelength in the onset and the extent development of cold cataract. (c) Study of the cold cataract effect along an equatorial diameter of the lens, considering the gradual concentration of the lens proteins (high protein concentration in the nucleus and low concentration in the cortex). (d) Study on the effect of thermal history, i.e. by warming up the lens at temperatures higher than the physiological one on the cold cataract effect. The basic conclusions of the present dissertation are summarized as follows: There are clear correlations between the spectral characteristics (autocorrelation functions) and the hierarchical stages of the onset of cataract. Qualitative and quantitative changes in the temperature dependence of several parameters, which are related with the diffusive motions of proteins at the early stages of cataract, appear already at 17 oC while the nucleus is still clear and highly transparent. The use of laser radiation close to the ultraviolet part of the spectrum seems to enhance the formation of cold cataract in the lens nucleus. Cold cataract does not develop at the cortex of the lens, in view of the low protein concentration. The lens pre-heating at a certain temperature for various time periods affects significantly cold cataract formation in the lens nucleus but not in lens cortex. The above mentioned make clear that dynamic light scattering can indeed provide useful parameters that can be successfully used as sensitive and reliable indicators for the early, non-invasive diagnosis of cataract in mammalian lenses and in vivo.
290

Caractérisation de nanoparticules et systèmes nanoparticulaires complexes par analyse de la diffusion multiangulaire de la lumière / Characterization of nanoparticles and complex nanoparticulate systems by multi-angular scattering

Montet, Cédric 17 March 2017 (has links)
Ce manuscrit de thèse de doctorat présente les travaux de développement d’un granulomètre optique pour la caractérisation de suspensions de nano et microparticules individuelles ainsi que d’agrégats. La mesure repose sur l’analyse suivant différents angles de la diffusion statique et dynamique de l’échantillon placé dans une cuve spectrophotométrique cylindrique. Il intègre différentes solutions originales telles qu’un éclairage par un faisceau laser de forte ellipticité, une détection sous le plan de diffusion conventionnel et l’utilisation d’une méthode de post-traitement qualifiée de « filtre quasi-statique ». Ces solutions permettent d’éliminer l’essentiel des problèmes liés aux réflexions spéculaires et diffuses de la cuve d’analyse, de même que les variations des dimensions du volume de mesure avec l’angle de diffusion et les cas de désalignement même léger du système goniométrique. Les signaux mesurés sont inversés avec des méthodes d’estimation de paramètres. Pour les particules sphériques, le problème direct est résolu avec la théorie de Lorenz-Mie. Pour les agrégats, il l’est avec un modèle d’agrégat fractal, des approximations par dipôles discrets ou Rayleigh-Gans-Debye. Les performances de cet instrument, de conception volontairement simple et robuste, ont été testées avec succès sur des nano et micro suspensions diluées, monomodales et bimodales, de latex et silice colloïdale, de même que des agrégats de particules aciculaires et sphériques. Il permet de caractériser la taille, la morphologie et la concentration absolue de particules dans la gamme de taille 20nm-2µm. / This PhD thesis manuscript presents the work conducted to develop an optical particle siz-ing instrument for the characterization of individual nano and microparticles, as well as their aggregates, in liquid suspensions. The measurement is based on the multi-angular analysis of the static and dynamic light scattering of a sample into a cylindrical spectrophotometric cell. This instrument integrates various innovative solutions such as an illumination by a high ellipticity laser beam, a detection under the conventional scattering plane and a post-processing method operating as a quasi-static filter. These solutions make it possible to elim-inate most of the problems associated with the specular and diffuse reflections of the analy-sis cell, as well as the harmful variations of the probe volume dimension with the detection angle and in case of a slight misalignment of the system. The signal inversion is performed with parameters estimation methods. For spherical particles, the direct problem is solved with the Lorenz-Mie theory. For aggregates, it is solved with a fractal aggregate model and approximations based on discrete dipoles or Rayleigh-Gans-Debye theories. The perfor-mance of this instrument, of a deliberately simple and robust design, has been successfully tested on dilute nano and micro suspensions of latex and colloidal silica, mono and bimodal, as well as aggregates of acicular and spherical particles. It allows to characterize the size, the morphology and the absolute concentration of particles in the size range 20nm-2μm.

Page generated in 0.0959 seconds