• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of the Graciosa, S. Miguel and Santa Maria volcanic islands : implications for the Nubia-Eurasia plate boundary in the Azores / Évolution des îles volcaniques de Graciosa, S. Miguel et Santa Maria : implications pour la limite de plaque Eurasie-Nubie dans les Açores

Sibrant, Aurore 03 November 2014 (has links)
L’archipel des Açores dans l’océan Atlantique est édifiées sur un épais plateau océanique, à proximité de la jonction triple entre les plaques Nord-américaine (Na), Nubienne (Nu) et Eurasienne (Eu). La formation du plateau et l’origine du volcanisme ont été le plus souvent attribués à la présence d’une instabilité mantellique. Cependant, la répartition et la morphologie des édifices volcaniques semblent avoir été grandement influencés par la déformation régionale liée à la migration de la frontière de plaque (Eu/Nu). En effet, la frontière serait passée d’une faille transformante aujourd’hui inactive, la zone de fracture est des Açores (EAFZ), à un rift ultra lent actif appelé le Rift de Terceira (TR).Lors de ce travail, nous utilisons le volcanisme comme marqueur de la déformation régionale. Nous nous intéressons particulièrement aux îles de S. Miguel et Graciosa, qui sont localisées à l’intérieur du TR, et à Santa Maria, une île volcanique éteinte qui se situe entre la EAFZ et le TR. De par leur position, ces trois îles constituent donc des cibles particulièrement appropriées afin d’étudier l’architecture et l’évolution de la frontière de plaque Eu/Nu durant les dernier Millions d’années. A partir de nouvelles données géomorphologiques, stratigraphiques, géochronologiques et tectoniques, couplées aux données bathymétriques et géophysiques disponibles, nous reconstruisons les étapes successives de construction et de démantèlement de ces îles puis discutons de leur signification géodynamique. Ces données sont ensuite complétées par des expériences de mécanique des fluides afin d’investiguer les liens possibles entre un panache mantellique, la migration de la frontière de plaque sur plusieurs échelles d’espace et de temps.Les résultats montrent que les édifices localisés dans le TR se construisent via des pulses volcaniques courts (<100 kyr) et relativement synchrones, séparés par des épisodes d’effondrements catastrophiques. Nous proposons qu’une telle évolution reflète des épisodes brefs et intenses de déformation régionale le long de la frontière de plaque active. La distribution des marqueurs tectoniques ainsi que leurs orientations N110 et N150 dans la partie Est de S. Miguel, nous conduit à proposer que l’extension oblique du TR est principalement accommodée par les failles bordières majeures du rift. Nous identifions une nouvelle tendance tectonique orientée N50° qui pourrait représenter des failles transformantes accommodant les variations d’obliquité du TR. L’activité de île de Santa Maria est ici datée entre 5.7 et 2.8 Ma. S. Maria a été façonnée par plusieurs effondrements sectoriels catastrophiques, le plus probablement déclenchés par les mouvements tectoniques régionaux. Nous identifions également une nouvelle structure de type graben reliant les îles de S. Maria et S. Jorge plus loin au NW. La forme de ce graben est semblable au TR et est située entre l’ancienne et la nouvelle frontière Eu/Nu. Nous interprétons ce graben comme un ancien rift transitionnel et donc comme une ancienne frontière de plaque Eu/Nu. A partir de nos données géochronologiques, nous proposons que la partie Est de ce rift transitionnel aurait migré vers la partie Est du TR entre 2.8 et 1.7 Ma.La migration de la frontière Eu/Nu a été interprétées par Vogt and Jung (2004) comme résultant de sauts successifs vers le NE de l’axe du Rift afin de maintenir sa position au dessus d’un point chaud fixe. Nos expériences de mécanique des fluides suggèrent que l’archipel des Açores, comme celui des Canaries, du Cap Vert, de Madère ainsi que les volcans sous marins de Great Meteor sont la signature en surface d’un groupe d’instabilités mantellique prenant naissance et remontant à partir du sommet d’un dôme thermochimique situé dans le manteau inférieur. De plus, Ces panaches secondaires pourraient être suffisamment faibles pour adapter leurs mouvements aux équilibres de forces pré-existants, notamment la structure et la morphologie de la lithosphère. / The Azores archipelago in the Atlantic comprises nine volcanic islands which developed on a thick oceanic plateau close to the Triple Junction between the North American (Na), the Nubian (Nu), and the Eurasian (Eu) lithospheric plates. The formation of the plateau and the origin of the volcanism remain controversial, but have been generally attributed to a plume-like mantle instability. However, the distribution of the volcanic edifices east of the Mid-Atlantic Ridge (MAR) appears greatly influenced by regional deformation associated with the northward migration of the Eu/Nu plate boundary from an extinct old transform fault, the East Azores Fracture Zone (EAFZ), up to the presently active ultra-slow Terceira Rift (TR). In this thesis, we use the volcanism as a marker for regional deformation. We especially focus on S. Miguel and Graciosa, which are located within the TR, and on S. Maria, an old volcanically extinct island located between the EAFZ and the TR. These three islands thus constitute particularly suitable targets to track the architecture and the evolution of the Eu/Nu plate boundary during the last few Myr. From new geomorphological, stratigraphic, geochronologic, structural/tectonic data, and existing bathymetric and geophysical data, we reconstruct the successive stages of growth and destruction of the islands, and discuss their geodynamic meaning. These data are then complemented by fluid dynamic modelling using laboratory experiments to examine the possible links between mantle instability, plate boundary migration and the development of the volcanism on various spatial and temporal scales.The new results on the islands show that the edifices located within the TR grew through short (<100 kyr) and partly synchronous volcanic pulses, separated by catastrophic sector collapses. We propose that such evolution reflects brief and intense episodes of regional deformation along the still active Eu/Nu plate boundary. The distribution of tectonic markers and the recognition of N110 and N150 tectonic structures in eastern S. Miguel leads us to propose that oblique extension in the TR is mainly accommodated by the master faults of the rift, and that the TR is presently not the locus of appreciable sea-floor spreading. Furthermore, we identify a new N050 trend, which may represent transform faults accommodating the variation in obliquity of the TR. The activity of S. Maria is here dated between 5.7 and 2.8 Ma. Like the recent islands, S. Maria experienced catastrophic flank collapses, most probably triggered by regional tectonics. We identify a new graben structure linking Santa Maria to the island of S. Jorge further NW. The shape of this graben is similar to the TR and it is located between the EAFZ and the current plate boundary. We interpret this graben as a former transient rift, and therefore an old Eu/Nu plate boundary. From the new data, we propose that the eastern part of the transient rift migrated to the eastern part of the TR between 2.8 Ma and 1.7 Ma.The overall migration of the Eu/Nu plate boundary to the north and the creation of the Azores plateau has been interpreted by Vogt and Jung (2004) as resulting from successive NE jumps of the rift axis to maintain its position over a fixed ‘hotspot’. Our fluid mechanics experiments suggest that the Azores, as Canary, Cape Verde, Madeira Islands and Great Meteor seamounts might be the surface signature of a cluster of mantle instabilities rising from the top of a large thermochemical dome located in the lower mantle. However, such secondary plumes present a strong time-dependence 5-40 Myr time scale. Moreover, they could be sufficiently weak to adapt their motions to the pre-existing force balances and morphology of the lithosphere. We therefore present a scenario of the Azores area evolution combining a triple junction and decompression melting buoyant material (i.e. such in volatiles and/or temperature) under a thickening lithosphere.
2

Déformation et anisotropie sismique sous les frontières de plaques décrochantes en domaine continental

Bonnin, Mickael 30 November 2011 (has links) (PDF)
Le travail réalisé pendant cette thèse a permis d'apporter de nouvelles contraintes sur le développement et la distribution de la déformation dans le manteau supérieur et plus particulièrement au niveau des grandes limites de plaques décrochantes. Grâce à l'apport de l'expérience USArray et d'une dizaine d'années d'enregistrements sismologiques supplémentaires, nous avons pu étudier, de manière précise, les variations d'anisotropie dans le voisinage de la Faille de San Andreas. Nous avons confirmé et étendu l'observation de deux couches anisotropes sous cette limite de plaque. On y observe une première couche localisée dans la lithosphère marquant la déformation induite à la limite de plaque, et une autre, asthénosphérique, cohérente avec l'anisotropie observée loin de la faille et d'origine plus discutée. Nous avons montré que la zone de déformation associée aux failles de San Andreas, Calaveras et d'Hayward a, vraisemblablement, une largeur d'au moins 40 kilomètres en base de lithosphère, sous chacune de ces failles. Nous avons ensuite procédé à la modélisation thermomécanique (ADELI) de la migration d'une limite de plaques décrochante couplée à une modélisation du développement de fabriques cristallographiques par une approche viscoplastique auto-cohérente (VPSC). Ceci nous a permis d'y observer le développement de la déformation et les conséquences des possibles interactions entre la déformation décrochante en surface et le cisaillement en base de lithosphère dû au déplacement horizontal des plaques. Les propriétés élastiques déduites des fabriques cristallographiques modélisées montrent que de telles interactions existent et provoquent, sous la limite de plaques, une rotation des orientations cristallographiques avec la profondeur. Le signal associé à ces rotations progressives n'est toutefois pas cohérent avec la présence de deux couches d'anisotropie comme proposée sous la faille de San Andreas. Nous pensons par conséquent qu'il existe, sous la Californie, une zone de découplage entre la lithosphère et l'asthénosphère, permettant d'individualiser une déformation lithosphérique d'une déformation asthénosphérique. Nous estimons, en outre, que l'anisotropie observée dans l'asthénosphère sous la Californie ne peut être expliquée seulement par le cisaillement induit par le déplacement de la lithosphère Nord Amérique. En effet, les propriétés anisotropes obtenues par modélisation à partir d'une plaque se déplaçant dans une direction et une vitesse proche de celle de la plaque Amérique du Nord montrent qu'on ne peut espérer guère plus que quelques dixièmes de seconde de délai au bout de 10 Ma de déplacement. Les déphasages mesurés en Californie étant de l'ordre de 1,5 s, il est donc nécessaire d'invoquer la présence d'écoulements mantelliques actifs sous cette région.
3

Les rides de Barracuda et de Tiburon, à l'Est de la subduction des Petites Antilles : origine, évolution et conséquences géodynamiques

Pichot, Thibaud 18 June 2012 (has links) (PDF)
Les rides de Barracuda et de Tiburon sont deux reliefs sous-marins situés dans la partie ouest de l'océan Atlantique, là où la lithosphère océanique des plaques Amérique du Nord (NAM) et Amérique du Sud (SAM) est entraînée par subduction sous la plaque Caraïbe, formant l'arc volcanique des Petites Antilles et le prisme d'accrétion de Barbade. Le processus et la période de soulèvement conduisant au relief actuel de ces rides (qui semblent être un marqueur important dans l'histoire géodynamique de la région) sont sujets à débat depuis des décennies.L'interprétation de nouvelles données de sismique réflexion et de bathymétrie multifaisceaux acquises à travers les rides de Barracuda et de Tiburon (campagne Antiplac, 2007 ) a permis de dater les périodes de soulèvements des rides et réaliser des reconstructions paléogéographiques incluant les flux sédimentaires majeurs, depuis le Crétacé jusqu' à l'Actuel.L'analyse structurale révèle des phases de réactivations tardives d'anciennes zones de fractures dans un contexte transpressif, conduisant aux surrections des rides de Tiburon et de Barracuda.Les processus géologiques possibles impliqués dans la formation des rides de Barracuda et de Tiburon coïncident avec les modèles cinématiques récents décrivant les mouvements relatifs entre les plaques NAM et SAM, le long de la limite de plaque diffuse.Ces résultats permettent de mieux définir la limite de plaque entre NAM et SAM. Elle est nécessairement hétérogène exploitant les zones de faiblesses dans la lithosphère que sont les zones de fracture. Au sein de cette limite de plaque la lithosphère serait donc fragmentée.
4

Les rides de Barracuda et de Tiburon, à l'Est de la subduction des Petites Antilles : origine, évolution et conséquences géodynamiques / The Barracuda Ridge and Tiburon Rise, East of the Lesser Antilles : origin, evolution and geodynamic implications

Pichot, Thibaud 18 June 2012 (has links)
Les rides de Barracuda et de Tiburon sont deux reliefs sous-marins situés dans la partie ouest de l'océan Atlantique, là où la lithosphère océanique des plaques Amérique du Nord (NAM) et Amérique du Sud (SAM) est entraînée par subduction sous la plaque Caraïbe, formant l'arc volcanique des Petites Antilles et le prisme d’accrétion de Barbade. Le processus et la période de soulèvement conduisant au relief actuel de ces rides (qui semblent être un marqueur important dans l'histoire géodynamique de la région) sont sujets à débat depuis des décennies.L’interprétation de nouvelles données de sismique réflexion et de bathymétrie multifaisceaux acquises à travers les rides de Barracuda et de Tiburon (campagne Antiplac, 2007 ) a permis de dater les périodes de soulèvements des rides et réaliser des reconstructions paléogéographiques incluant les flux sédimentaires majeurs, depuis le Crétacé jusqu’ à l’Actuel.L’analyse structurale révèle des phases de réactivations tardives d’anciennes zones de fractures dans un contexte transpressif, conduisant aux surrections des rides de Tiburon et de Barracuda.Les processus géologiques possibles impliqués dans la formation des rides de Barracuda et de Tiburon coïncident avec les modèles cinématiques récents décrivant les mouvements relatifs entre les plaques NAM et SAM, le long de la limite de plaque diffuse.Ces résultats permettent de mieux définir la limite de plaque entre NAM et SAM. Elle est nécessairement hétérogène exploitant les zones de faiblesses dans la lithosphère que sont les zones de fracture. Au sein de cette limite de plaque la lithosphère serait donc fragmentée. / The Barracuda Ridge and the Tiburon Rise, two oceanic-basement ridges, lie in the western Atlantic Ocean, where oceanic lithosphere of the North American (NAM) and South American (SAM) plates is subducted beneath the Caribbean plate, creating the Lesser Antilles volcanic arc and the Barbados Ridge accretionary complex. The process and the timing of the uplift leading to the present day morphologies of the Tiburon and Barracuda ridges, that seem to be key markers in the geodynamic history of the region, has remained a matter of debate for decades.From the analysis of new multibeam and seismic reflection profiles acquired in 2007 (Antiplac crusie) DSDP-ODP boreholes available, we provide new information on the timing of the formation of the Barracuda Ridge and Tiburon Rise in their present-day configurations. We propose paleogeographic reconstructions with the main sediments fluxes deposited in the area of the Barracuda and Tiburon ridges from the Late Cretaceous to present. Structural analysis shows reactivation of fracture zones in a transpressive setting leading to the uplifts of the Barracuda and Tiburon Ridges.The location of the Barracuda Ridge and the Tiburon Rise and the timing of the uplift fit well with recent global plate kinematic models describing the movements of NAM relative to SAM along a diffuse plate boundaryThis NAM-SAM plate boundary zone, therefore must most certainly be heterogeneous in nature, exploiting weaknesses in the lithosphere provided by fracture zones where mechanically advantageous, but forming new boundary segments elsewhere, to transfer motion between reactivated segments of the fracture zones.

Page generated in 0.0416 seconds