• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Système d'interférences radiofréquences pour la cryptographie par chaos appliquée aux transmissions hertziennes

Pallavisini, A. 09 July 2007 (has links) (PDF)
La sécurisation des systèmes de transmission de données est un enjeu majeur de la société de l'information. Ce travail aborde une solution potentielle originale, dédiée aux transmissions radio-fréquences en espace libre, et en utilisant un mode de sécurisation à base de comportements chaotiques. La porteuse chaotique est générée par un oscillateur non linéaire à retard, qui permet d'appliquer la méthode de sécurisation par porteuse chaotique en modulation de fréquence directement au niveau de la couche physique du système de transmission. L'étude et la réalisation expérimentale du principe de génération de chaos en modulation de fréquence (FM) est présentée à partir d'une transformation non linéaire construite par profil de filtrage RF à résonances multiples, et l'autre en utilisant un montage optoélectronique original réalisant la non linéaire à partir d'un interféromètre radio-fréquence à fibre optique. Dans chacun, un système complet d'émission-réception par porteuse chaotique FM démontré.
2

Ring topology of an optical phase delayed nonlinear dynamics for neuromorphic photonic computing / Topologie en anneau d’une dynamique non linéaire à retard en phase optique, pour le calcul photonique neuromorphique

Baylon Fuentes, Antonio 13 December 2016 (has links)
Aujourd'hui, la plupart des ordinateurs sont encore basés sur des concepts développés il y a plus de 60 ans par Alan Turing et John von Neumann. Cependant, ces ordinateurs numériques ont déjà commencé à atteindre certaines limites physiques via la technologie de la microélectronique au silicium (dissipation, vitesse, limites d'intégration, consommation d'énergie). Des approches alternatives, plus puissantes, plus efficaces et moins consommatrices d'énergie, constituent depuis plusieurs années un enjeu scientifique majeur. Beaucoup de ces approches s'inspirent naturellement du cerveau humain, dont les principes opérationnels sont encore loin d'être compris. Au début des années 2000, la communauté scientifique s'est aperçue qu'une modification du réseau neuronal récurrent (RNN), plus simple et maintenant appelée Reservoir Computing (RC), est parfois plus efficace pour certaines fonctionnalités, et est un nouveau paradigme de calcul qui s'inspire du cerveau. Sa structure est assez semblable aux concepts classiques de RNN, présentant généralement trois parties: une couche d'entrée pour injecter l'information dans un système dynamique non-linéaire (Write-In), une seconde couche où l'information d'entrée est projetée dans un espace de grande dimension (appelé réservoir dynamique) et une couche de sortie à partir de laquelle les informations traitées sont extraites par une fonction dite de lecture-sortie. Dans l'approche RC, la procédure d'apprentissage est effectuée uniquement dans la couche de sortie, tandis que la couche d'entrée et la couche réservoir sont fixées de manière aléatoire, ce qui constitue l'originalité principale du RC par rapport aux méthodes RNN. Cette fonctionnalité permet d'obtenir plus d'efficacité, de rapidité, de convergence d'apprentissage, et permet une mise en œuvre expérimentale. Cette thèse de doctorat a pour objectifs d'implémenter pour la première fois le RC photoniques en utilisant des dispositifs de télécommunication. Notre mise en œuvre expérimentale est basée sur un système dynamique non linéaire à retard, qui repose sur un oscillateur électro-optique (EO) avec une modulation de phase différentielle. Cet oscillateur EO a été largement étudié dans le contexte de la cryptographie optique du chaos. La dynamique présentée par de tels systèmes est en effet exploitée pour développer des comportements complexes dans un espace de phase à dimension infinie, et des analogies avec la dynamique spatio-temporelle (tels que les réseaux neuronaux) sont également trouvés dans la littérature. De telles particularités des systèmes à retard ont conforté l'idée de remplacer le RNN traditionnel (généralement difficile à concevoir technologiquement) par une architecture à retard d'EO non linéaire. Afin d'évaluer la puissance de calcul de notre approche RC, nous avons mis en œuvre deux tests de reconnaissance de chiffres parlés (tests de classification) à partir d'une base de données standard en intelligence artificielle (TI-46 et AURORA-2), et nous avons obtenu des performances très proches de l'état de l'art tout en établissant un nouvel état de l'art en ce qui concerne la vitesse de classification. Notre approche RC photonique nous a en effet permis de traiter environ 1 million de mots par seconde, améliorant la vitesse de traitement de l'information d'un facteur supérieur à ~3. / Nowadays most of computers are still based on concepts developed more than 60 years ago by Alan Turing and John von Neumann. However, these digital computers have already begun to reach certain physical limits of their implementation via silicon microelectronics technology (dissipation, speed, integration limits, energy consumption). Alternative approaches, more powerful, more efficient and with less consume of energy, have constituted a major scientific issue for several years. Many of these approaches naturally attempt to get inspiration for the human brain, whose operating principles are still far from being understood. In this line of research, a surprising variation of recurrent neural network (RNN), simpler, and also even sometimes more efficient for features or processing cases, has appeared in the early 2000s, now known as Reservoir Computing (RC), which is currently emerging new brain-inspired computational paradigm. Its structure is quite similar to the classical RNN computing concepts, exhibiting generally three parts: an input layer to inject the information into a nonlinear dynamical system (Write-In), a second layer where the input information is projected in a space of high dimension called dynamical reservoir and an output layer from which the processed information is extracted through a so-called Read-Out function. In RC approach the learning procedure is performed in the output layer only, while the input and reservoir layer are randomly fixed, being the main originality of RC compared to the RNN methods. This feature allows to get more efficiency, rapidity and a learning convergence, as well as to provide an experimental implementation solution. This PhD thesis is dedicated to one of the first photonic RC implementation using telecommunication devices. Our experimental implementation is based on a nonlinear delayed dynamical system, which relies on an electro-optic (EO) oscillator with a differential phase modulation. This EO oscillator was extensively studied in the context of the optical chaos cryptography. Dynamics exhibited by such systems are indeed known to develop complex behaviors in an infinite dimensional phase space, and analogies with space-time dynamics (as neural network ones are a kind of) are also found in the literature. Such peculiarities of delay systems supported the idea of replacing the traditional RNN (usually difficult to design technologically) by a nonlinear EO delay architecture. In order to evaluate the computational power of our RC approach, we implement two spoken digit recognition tests (classification tests) taken from a standard databases in artificial intelligence TI-46 and AURORA-2, obtaining results very close to state-of-the-art performances and establishing state-of-the-art in classification speed. Our photonic RC approach allowed us to process around of 1 million of words per second, improving the information processing speed by a factor ~3.
3

Démonstration opto-électronique du concept de calculateur neuromorphique par Reservoir Computing / demonstration of optoelectronic concept of neuromorphic computer by reservoir computing

Martinenghi, Romain 16 December 2013 (has links)
Le Reservoir Computing (RC) est un paradigme s’inspirant du cerveau humain, apparu récemment au début des années2000. Il s'agit d'un calculateur neuromorphique habituellement décomposé en trois parties dont la plus importanteappelée "réservoir" est très proche d'un réseau de neurones récurrent. Il se démarque des autres réseaux de neuronesartificiels notamment grâce aux traditionnelles phases d'apprentissage et d’entraînement qui ne sont plus appliquées surla totalité du réseau de neurones mais uniquement sur la lecture du réservoir, ce qui simplifie le fonctionnement etfacilite une réalisation physique. C'est précisément dans ce contexte qu’ont été réalisés les travaux de recherche de cettethèse, durant laquelle nous avons réalisé une première implémentation physique opto-électronique de système RC.Notre approche des systèmes physiques RC repose sur l'utilisation de dynamiques non-linéaires à retards multiples dansl'objectif de reproduire le comportement complexe d'un réservoir. L'utilisation d'un système dynamique purementtemporel pour reproduire la dimension spatio-temporelle d'un réseau de neurones traditionnel, nécessite une mise enforme particulière des signaux d'entrée et de sortie, appelée multiplexage temporel ou encore étape de masquage. Troisannées auront été nécessaires pour étudier et construire expérimentalement nos démonstrateurs physiques basés sur desdynamiques non-linéaires à retards multiples opto-électroniques, en longueur d'onde et en intensité. La validationexpérimentale de nos systèmes RC a été réalisée en utilisant deux tests de calcul standards. Le test NARMA10 (test deprédiction de séries temporelles) et la reconnaissance vocale de chiffres prononcés (test de classification de données) ontpermis de quantifier la puissance de calcul de nos systèmes RC et d'atteindre pour certaines configurations l'état del'art. / Reservoir Computing (RC) is a currently emerging new brain-inspired computational paradigm, which appeared in theearly 2000s. It is similar to conventional recurrent neural network (RNN) computing concepts, exhibiting essentiallythree parts: (i) an input layer to inject the information in the computing system; (ii) a central computational layercalled the Reservoir; (iii) and an output layer which is extracting the computed result though a so-called Read-Outprocedure, the latter being determined after a learning and training step. The main originality compared to RNNconsists in the last part, which is the only one concerned by the training step, the input layer and the Reservoir beingoriginally randomly determined and fixed. This specificity brings attractive features to RC compared to RNN, in termsof simplification, efficiency, rapidity, and feasibility of the learning, as well as in terms of dedicated hardwareimplementation of the RC scheme. This thesis is indeed concerned by one of the first a hardware implementation of RC,moreover with an optoelectronic architecture.Our approach to physical RC implementation is based on the use of a sepcial class of complex system for the Reservoir,a nonlinear delay dynamics involving multiple delayed feedback paths. The Reservoir appears thus as a spatio-temporalemulation of a purely temporal dynamics, the delay dynamics. Specific design of the input and output layer are shownto be possible, e.g. through time division multiplexing techniques, and amplitude modulation for the realization of aninput mask to address the virtual nodes in the delay dynamics. Two optoelectronic setups are explored, one involving awavelength nonlinear dynamics with a tunable laser, and another one involving an intensity nonlinear dynamics with anintegrated optics Mach-Zehnder modulator. Experimental validation of the computational efficiency is performedthrough two standard benchmark tasks: the NARMA10 test (prediction task), and a spoken digit recognition test(classification task), the latter showing results very close to state of the art performances, even compared with purenumerical simulation approaches.

Page generated in 0.0349 seconds