1 |
La fonction d'onde du photon en principe et en pratique / The Photon Wave Function in Principle and in PracticeDebierre, Vincent 25 September 2015 (has links)
Pendant ces trois ans, nous nous sommes intéressés à quelques sujets choisis en optique et en électrodynamique quantiques. Le fil rouge de nos interrogations est la fonction d’onde du photon. Les expériences d’optique et d’électrodynamique quantique peuvent-elles être décrites de manière simple, dans l’espace des positions, à l’aide d’une fonction d’onde décrivant le ou les photon(s) impliqués dans l’expérience ? Ce n’est pas entièrement évident :la description usuelle des photons se fait dans l’espace réciproque des vecteurs d’onde. Mais ces expériences gagnent à être décrites par la mécanique ondulatoire en représentation position, comme cela est fait dans les manuels de mécanique quantique pour des situations impliquant des particules massives. De surcroît, une expérience récente[1] a conduit à l’observation de trajectoires de photons uniques à travers un interféromètre à deux fentes d’Young.Pour essayer de décrire formellement ces trajectoires, il est naturel de formuler une mécanique ondulatoire pour les photons. Nous avons donc examiné en détail la construction formelle de la fonction d’onde du photon, un objet qui est resté peu étudié jusqu’aux années 1990. Nous avons également étudié les propriétés de la fonction d’onde du photon en présence de sources, et considéré pour ce faire divers systèmes quantiques ouverts (en interaction). Nous avons vu qu’il existe, en principe, une infinité de possibilités pour le choix de la fonction d’onde du photon.Nous avons mis en évidence un certain nombre de critères sur la base desquels il apparaît que seuls trois choix parmi tous ceux possibles sont intéressants, l’un d’entre eux ramenant à un objet introduit par Glauber [2] pour étudier la détection de la lumière et les corrélations du champ électromagnétique. Nous avons également vu qu’en l’absence de sources l’équation quantique de propagation des photons est formellement identique aux équations de Maxwell.À bas nombre de photons, le formalisme de la fonction d’onde peut se révéler très pratique. Nous avons adapté l’approche aux systèmes en interaction, en nous intéressant dans un premier temps à l’électrodynamique quantique1en cavité [3], en particulier aux expériences réalisées par le groupe de Serge Haroche [4]. Nous avons proposé un modèle simple pour la description des photons dans les cavités d’électrodynamique. À l’aide de ce modèle, et de la fonction d’onde du photon, nous avons étudié la propagation des photons s’échappant de la cavité. Nous avons également construit l’équation maîtresse de Lindblad sans introduire de sauts quantiques non unitaires (voir également [5]). Nous nous sommes enfin intéressés à la question de l’évolution spatiotemporelle d’un photon émis lors d’une désexcitation d’un électron atomique. Après avoir étudié soigneusement la dynamique de la désexcitation de l’électron, notamment aux temps très courts [6, 7], nous nous sommes attachés à décrire, aussi rigoureusement que possible, le champ électromagnétique émis. Celui-ci, de manière surprenante, n’évolue pas causalement. Si cela n’est pas entièrement inattendu au vu du théorème de Hegerfeldt, qui stipule [8] que la causalité est exclue pour les systèmes décrits par un Hamiltonien dont le spectre est borné inférieurement, nous avons identifié [9] deux autres sources de non-causalité, l’une, prédite qualitativement par Shirokov [10], et l’autre, entièrement nouvelle à notre connaissance, et dont la compréhension reste à affiner. / During these three years we focused on several topics in quantum otpics and quantum electrodynamics. A central theme in our investigations is that of the photon wave function. Can quantum optics and quantum electrodynamics experiments be described simply, in position space, with the help of a wave function describing the photon(s) featured in the experiment ? The answer to that question is not quite obvious: the usual description of photons takes place in the reciprocal space of wave vectors. But these experiments call for a wave mechanical description in the position representation, as is done in quantum mechanics textbooks in situations featuring massive particles. Moreover, in a recent experiment [1], single photon trajectories through a Young two-slit setup have been observed. In order to try and describe these trajectories formally, it is natural to build a wave mechanical formalism for photons. We therefore studied in detail the formal construction of the photon wave function, an object which was little studied until the 1990s. We also studied the properties of the photon wave function in the presence of sources.To do that, we considered several open (interacting) quantum systems. We saw that there exists in principle an infinite number of possibilities when defining the photon wave function. We emphasised several criteria on the basis of which it appears that only three choices for the wave function are interesting. One of them coincides with an object introduced and used by Glauber [2] to study light detection andthe correlations of the electromagnetic field in the quantum regime. We also saw that, in the absence of sources, the propagation equation for a single photon is formally equivalent to Maxwell’s equations. At low photon numbers, the wave function formalism can be very useful. We adapted it to interacting systems,first, to cavity quantum electrodynamics (QED) [3], in particular to the experiments carried out by Serge Haroche’s group [4]. We proposed a simple model to describe photons in QED cavities. With this model, and with the helpof the photon wave function, we studied the propagation of photons escaping a cavity. We also constructed the Lindblad master equation without introducing nonunitary quantum jumps (also see [5]). We finally investigated the spacetime evolution of a photon which is emitted during the decay of an atomic electron. After having carefully studied the dynamics of the electronic decay, especially at very short times [6, 7], we set out to describe the emitted electromagnetic field as rigorously as possible. This emitted field, surprisingly, does not evolve causally. Though this is not entirely unexpected in view of Hegerfeldt’s theorem, which states [8] that causality is impossible for quantum systems which are described by a Hamiltonian with a spectrum which is bounded by below, we identified [9] two other sources of non causality. One of them was predicted qualitatively by Shirokov [10], while the other one, which is completely new as far as we can tell, is still to be better understood
|
2 |
Exceptional Points and their Consequences in Open, Minimal Quantum SystemsMuldoon, Jacob E. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Open quantum systems have become a rapidly developing sector for research. Such systems present novel physical phenomena, such as topological chirality, enhanced sensitivity, and unidirectional invisibility resulting from both their non-equilibrium dynamics and the presence of exceptional points.
We begin by introducing the core features of open systems governed by non-Hermitian Hamiltonians, providing the PT -dimer as an illustrative example. Proceeding, we introduce the Lindblad master equation which provides a working description of decoherence in quantum systems, and investigate its properties through the Decohering Dimer and periodic potentials. We then detail our preferred experimental apparatus governed by the Lindbladian. Finally, we introduce the Liouvillian, its relation to non-Hermitian Hamiltonians and Lindbladians, and through it investigate multiple properties of open quantum systems.
|
3 |
Evolution of a 1D bipartite fermionic chain under in?uence of a phenomenological dephasingRibeiro, Wellington Luiz January 2018 (has links)
Orientador: Prof. Dr. Gabriel Teixeira Landi / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, Santo André, 2018. / Em sistemas microscópicos, grandezas como calor e trabalho devem ser tratadas como
variáveis aleatórias. Neste trabalho foram estudados os fluxos de calor e de partículas entre
dois sistemas unidimensionais fermiônicos A eB, inicialmente preparados separadamente em
equilíbrio térmico com reservatórios de calor e partículas preparados a diferentes temperaturas e diferentes potenciais químicos. Calculando a evolução da matriz densidade, foram analisadas as implicações da presença de um ruído de dephasing no sistema, tais como a termalização, a produção de entropia e a evolução da informação mútua como uma forma de analisar a correlação entre os sistemas. Além disso, foi estudado também uma forma do teorema de flutuação do calor no caso onde há fluxo de partículas. / In microscopic systems, heat and work must be treated as random variables. In this work
I studied the fluxes of heat and particles between two unidimentional fermionic systems A
and B, initially prepared in thermal equilibrium with a reservoir of particles and heat, kept
at diferent temperatures and chemical potentials. Computing the evolution of the density
matrix, the implications of the presence of a dephasing noise in the system were analyzed,
such as thermalization, entropy production and the evolution of mutual information as a way
to analyze the correlation between the systems. Moreover, a shape for fluctuation theorems
of the heat in the case where there is also a ?ux of particles and its validity was also studied.
|
4 |
Exceptional Points and their Consequences in Open, Minimal Quantum SystemsJacob E Muldoon (13141602) 08 September 2022 (has links)
<p>Open quantum systems have become a rapidly developing sector for research. Such systems present novel physical phenomena, such as topological chirality, enhanced sensitivity, and unidirectional invisibility resulting from both their non-equilibrium dynamics and the presence of exceptional points.</p>
<p><br></p>
<p>We begin by introducing the core features of open systems governed by non-Hermitian Hamiltonians, providing the PT -dimer as an illustrative example. Proceeding, we introduce the Lindblad master equation which provides a working description of decoherence in quantum systems, and investigate its properties through the Decohering Dimer and periodic potentials. We then detail our preferred experimental apparatus governed by the Lindbladian. Finally, we introduce the Liouvillian, its relation to non-Hermitian Hamiltonians and Lindbladians, and through it investigate multiple properties of open quantum systems.</p>
|
5 |
Elimination adiabatique pour systèmes quantiques ouverts / Adiabatic elimination for open quantum systemsAzouit, Rémi 27 October 2017 (has links)
Cette thèse traite du problème de la réduction de modèle pour les systèmes quantiquesouverts possédant différentes échelles de temps, également connu sous le nom d’éliminationadiabatique. L’objectif est d’obtenir une méthode générale d’élimination adiabatiqueassurant la structure quantique du modèle réduit.On considère un système quantique ouvert, décrit par une équation maîtresse deLindblad possédant deux échelles de temps, la dynamique rapide faisant converger lesystème vers un état d’équilibre. Les systèmes associés à un état d’équilibre unique ouune variété d’états d’équilibre ("decoherence-free space") sont considérés. La dynamiquelente est traitée comme une perturbation. En utilisant la séparation des échelles de temps,on développe une nouvelle technique d’élimination adiabatique pour obtenir, à n’importequel ordre, le modèle réduit décrivant les variables lentes. Cette méthode, basée sur undéveloppement asymptotique et la théorie géométrique des perturbations singulières, assureune bonne interprétation physique du modèle réduit au second ordre en exprimant ladynamique réduite sous une forme de Lindblad et la paramétrisation définissant la variétélente dans une forme de Kraus (préservant la trace et complètement positif). On obtientainsi des formules explicites, pour calculer le modèle réduit jusqu’au second ordre, dans lecas des systèmes composites faiblement couplés, de façon Hamiltonienne ou en cascade;des premiers résultats au troisième ordre sont présentés. Pour les systèmes possédant unevariété d’états d’équilibre, des formules explicites pour calculer le modèle réduit jusqu’ausecond ordre sont également obtenues. / This thesis addresses the model reduction problem for open quantum systems with differenttime-scales, also called adiabatic elimination. The objective is to derive a generic adiabaticelimination technique preserving the quantum structure for the reduced model.We consider an open quantum system, described by a Lindblad master equation withtwo time-scales, where the fast time-scale drives the system towards an equilibrium state.The cases of a unique steady state and a manifold of steady states (decoherence-free space)are considered. The slow dynamics is treated as a perturbation. Using the time-scaleseparation, we developed a new adiabatic elimination technique to derive at any orderthe reduced model describing the slow variables. The method, based on an asymptoticexpansion and geometric singular perturbation theory, ensures the physical interpretationof the reduced second-order model by giving the reduced dynamics in a Lindblad formand the mapping defining the slow manifold as a completely positive trace-preserving map(Kraus map) form. We give explicit second-order formulas, to compute the reduced model,for composite systems with weak - Hamiltonian or cascade - coupling between the twosubsystems and preliminary results on the third order. For systems with decoherence-freespace, explicit second order formulas are as well derived.
|
6 |
Collective Quantum Jumps of Rydberg Atoms Undergoing Two-Channel Spontaneous EmissionCayayan, Lyndon Mark D. 10 August 2016 (has links)
No description available.
|
Page generated in 0.2948 seconds