• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interfacial instabilities and wetting behaviour in confinement

Setu, Siti Aminah January 2014 (has links)
Interfacial instabilities and wetting phenomena of phase separated colloid-polymer mixtures are addressed in this study. Colloidal particles offer certain advantages over molecular systems, due to their larger lengthscales and slower timescales. Moreover, the phenomena can be directly visualised using laser scanning confocal microscopy, and a perfect match with soft-lithography fabrication techniques can be exploited. In particular, we study the viscous fingering instability in three dimensions, focusing on the role of wetting conditions and of thermal fluctuations. Combined with results obtained by lattice Boltzmann simulations, we reveal that the cross-over of the meniscus in the direction across the channel thickness is controlled by the capillary and Peclet numbers, and viscosity contrast of the system. The curvature of the meniscus has a pronounced effect on the onset of the Saffman-Taylor instability, in which the formation of the viscous fingers is suppressed up to a certain threshold. Furthermore, we investigate a related contact line instability, which leads to entrainment and subsequent droplet pinch-off. A theoretical prediction for the onset of the instability is developed, which shows a good agreement with the experimental observations and yields a method to directly measure the slip length of the interface. The large thermal fluctuations of our interface play an important role in pinch-off events, leading to periodic emission of droplets of similar sizes. Finally, we study wetting phenomena at geometrically sculpted walls. We focus on the shape, the thickness and the radius of curvature of the adsorbed liquid film, and find good agreement with theory. Changing the curvature of the wedge from a flat surface to a capil- lary slit furthermore smoothly connects wetting behaviour and capillary condensation, again in qualitative agreement with theory. Non-equilibrium effects may interfere with the data and are difficult to rule out. We end with recommendations for future work.

Page generated in 0.0676 seconds