• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical strategies to retrieve lost capacity in Li-ion batteries by reversed Li-trapping

Thulin, Christopher January 2023 (has links)
Since the transportation sector wants to move away from fossil fuels and become more dependen ton clean and green energy, the use of rechargeable batteries is a good solution. Lithium-based batteries work very well as rechargeable batteries in electric vehicles. To extend the cycle life of lithium-based batteries a reversed Li+-trapping protocol has been implemented to extract lostcapacity. Prior to the start of this project, reversed Li+-trapping has been used on a proof-of-concept level and no specific protocol has been utilised in conjunction with full cells. With a protocol that uses constant voltage discharge steps on every fifth cycle, trapped Li+ can diffuse out from the graphite (anode) and travel back to the NMC811 (cathode). This will result in a lower capacity loss than if it only had cycled with constant current, using a C-rate of 1C. If a cell is operated with a constant voltage discharge step on every cycle, high capacity can be maintained for many cycles. This could potentially be used as a formation cycle protocol. The capacity is higher in the long run if the constant voltage discharge step is applied on every fifth cycle rather than every cycle. With a constant voltage discharge cell voltage of 2.8 V good results are obtained. A constant voltage discharge cell voltage of 0 V will however destroy the cell due to Cucurrent collector dissolution.

Page generated in 0.0478 seconds